A. Scotland;G. Cosne;A. Juraver;A. Karatsidis;J. Penalver-Andres;E. Bartholomé;C. M. Kanzler;C. Mazzà;D. Roggen;C. Hinchliffe;S. Del Din;S. Belachew
{"title":"DISPEL: A Python Framework for Developing Measures From Digital Health Technologies","authors":"A. Scotland;G. Cosne;A. Juraver;A. Karatsidis;J. Penalver-Andres;E. Bartholomé;C. M. Kanzler;C. Mazzà;D. Roggen;C. Hinchliffe;S. Del Din;S. Belachew","doi":"10.1109/OJEMB.2024.3402531","DOIUrl":null,"url":null,"abstract":"<italic>Goal</i>\n: This paper introduces DISPEL, a Python framework to facilitate development of sensor-derived measures (SDMs) from data collected with digital health technologies in the context of therapeutic development for neurodegenerative diseases. \n<italic>Methods</i>\n: Modularity, integrability and flexibility were achieved adopting an object-oriented architecture for data modelling and SDM extraction, which also allowed standardizing SDM generation, naming, storage, and documentation. Additionally, a functionality was designed to implement systematic flagging of missing data and unexpected user behaviors, both frequent in unsupervised monitoring. \n<italic>Results</i>\n: DISPEL is available under MIT license. It already supports formats from different data providers and allows traceable end-to-end processing from raw data collected with wearables and smartphones to structured SDM datasets. Novel and literature-based signal processing approaches currently allow to extract SDMs from 16 structured tests (including six questionnaires), assessing overall disability and quality of life, and measuring performance outcomes of cognition, manual dexterity, and mobility. \n<italic>Conclusion</i>\n: DISPEL supports SDM development for clinical trials by providing a production-grade Python framework and a large set of already implemented SDMs. While the framework has already been refined based on clinical trials’ data, ad-hoc validation of the provided algorithms in their specific context of use is recommended to the users.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"5 ","pages":"494-497"},"PeriodicalIF":2.7000,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10533679","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Engineering in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10533679/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Goal
: This paper introduces DISPEL, a Python framework to facilitate development of sensor-derived measures (SDMs) from data collected with digital health technologies in the context of therapeutic development for neurodegenerative diseases.
Methods
: Modularity, integrability and flexibility were achieved adopting an object-oriented architecture for data modelling and SDM extraction, which also allowed standardizing SDM generation, naming, storage, and documentation. Additionally, a functionality was designed to implement systematic flagging of missing data and unexpected user behaviors, both frequent in unsupervised monitoring.
Results
: DISPEL is available under MIT license. It already supports formats from different data providers and allows traceable end-to-end processing from raw data collected with wearables and smartphones to structured SDM datasets. Novel and literature-based signal processing approaches currently allow to extract SDMs from 16 structured tests (including six questionnaires), assessing overall disability and quality of life, and measuring performance outcomes of cognition, manual dexterity, and mobility.
Conclusion
: DISPEL supports SDM development for clinical trials by providing a production-grade Python framework and a large set of already implemented SDMs. While the framework has already been refined based on clinical trials’ data, ad-hoc validation of the provided algorithms in their specific context of use is recommended to the users.
期刊介绍:
The IEEE Open Journal of Engineering in Medicine and Biology (IEEE OJEMB) is dedicated to serving the community of innovators in medicine, technology, and the sciences, with the core goal of advancing the highest-quality interdisciplinary research between these disciplines. The journal firmly believes that the future of medicine depends on close collaboration between biology and technology, and that fostering interaction between these fields is an important way to advance key discoveries that can improve clinical care.IEEE OJEMB is a gold open access journal in which the authors retain the copyright to their papers and readers have free access to the full text and PDFs on the IEEE Xplore® Digital Library. However, authors are required to pay an article processing fee at the time their paper is accepted for publication, using to cover the cost of publication.