Ikrom Akramov, Sebastian Götschel, Michael Minion, Daniel Ruprecht, Robert Speck
{"title":"Spectral Deferred Correction Methods for Second-Order Problems","authors":"Ikrom Akramov, Sebastian Götschel, Michael Minion, Daniel Ruprecht, Robert Speck","doi":"10.1137/23m1592596","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page A1690-A1713, June 2024. <br/> Abstract. Spectral deferred corrections (SDC) are a class of iterative methods for the numerical solution of ordinary differential equations. SDC can be interpreted as a Picard iteration to solve a fully implicit collocation problem, preconditioned with a low-order method. It has been widely studied for first-order problems, using explicit, implicit, or implicit-explicit Euler and other low-order methods as preconditioner. For first-order problems, SDC achieves arbitrary order of accuracy and possesses good stability properties. While numerical results for SDC applied to the second-order Lorentz equations exist, no theoretical results are available for SDC applied to second-order problems. We present an analysis of the convergence and stability properties of SDC using velocity-Verlet as the base method for general second-order initial value problems. Our analysis proves that the order of convergence depends on whether the force in the system depends on the velocity. We also demonstrate that the SDC iteration is stable under certain conditions. Finally, we show that SDC can be computationally more efficient than a simple Picard iteration or a fourth-order Runge–Kutta–Nyström method. Reproducibility of computational results.This paper has been awarded the “SIAM Reproducibility Badge: code and data available,” as a recognition that the authors have followed reproducibility principles valued by SISC and the scientific computing community. Code and data that allow readers to reproduce the results in this paper are available at https://github.com/Parallel-in-Time/pySDC/tree/master/pySDC/projects/Second_orderSDC.","PeriodicalId":49526,"journal":{"name":"SIAM Journal on Scientific Computing","volume":"11 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1592596","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page A1690-A1713, June 2024. Abstract. Spectral deferred corrections (SDC) are a class of iterative methods for the numerical solution of ordinary differential equations. SDC can be interpreted as a Picard iteration to solve a fully implicit collocation problem, preconditioned with a low-order method. It has been widely studied for first-order problems, using explicit, implicit, or implicit-explicit Euler and other low-order methods as preconditioner. For first-order problems, SDC achieves arbitrary order of accuracy and possesses good stability properties. While numerical results for SDC applied to the second-order Lorentz equations exist, no theoretical results are available for SDC applied to second-order problems. We present an analysis of the convergence and stability properties of SDC using velocity-Verlet as the base method for general second-order initial value problems. Our analysis proves that the order of convergence depends on whether the force in the system depends on the velocity. We also demonstrate that the SDC iteration is stable under certain conditions. Finally, we show that SDC can be computationally more efficient than a simple Picard iteration or a fourth-order Runge–Kutta–Nyström method. Reproducibility of computational results.This paper has been awarded the “SIAM Reproducibility Badge: code and data available,” as a recognition that the authors have followed reproducibility principles valued by SISC and the scientific computing community. Code and data that allow readers to reproduce the results in this paper are available at https://github.com/Parallel-in-Time/pySDC/tree/master/pySDC/projects/Second_orderSDC.
期刊介绍:
The purpose of SIAM Journal on Scientific Computing (SISC) is to advance computational methods for solving scientific and engineering problems.
SISC papers are classified into three categories:
1. Methods and Algorithms for Scientific Computing: Papers in this category may include theoretical analysis, provided that the relevance to applications in science and engineering is demonstrated. They should contain meaningful computational results and theoretical results or strong heuristics supporting the performance of new algorithms.
2. Computational Methods in Science and Engineering: Papers in this section will typically describe novel methodologies for solving a specific problem in computational science or engineering. They should contain enough information about the application to orient other computational scientists but should omit details of interest mainly to the applications specialist.
3. Software and High-Performance Computing: Papers in this category should concern the novel design and development of computational methods and high-quality software, parallel algorithms, high-performance computing issues, new architectures, data analysis, or visualization. The primary focus should be on computational methods that have potentially large impact for an important class of scientific or engineering problems.