{"title":"A Nested Orbicular Shaped Textile Antenna with Centered Hexagonal Slot, DGS and Enhanced Bandwidth for ISM, Wi-Fi, WLAN & Bluetooth Applications","authors":"Raghav Dwivedi, D. K. Srivastava, V. K. Singh","doi":"10.1007/s40998-024-00729-7","DOIUrl":null,"url":null,"abstract":"<p>This research presents a novel design for a textile antenna with a nested orbicular shape, featuring a centered hexagonal slot and a depleted ground structure (DGS). The proposed antenna is specifically tailored to cater to the demanding requirements of Industrial, Scientific, and Medical (ISM) bands, as well as applications in Wi-Fi, Wireless Local Area Network (WLAN), and Bluetooth technologies. The nested orbicular configuration is chosen for its compactness and geometric versatility, allowing for efficient integration into wearable and textile-based communication systems. The incorporation of a centered hexagonal slot within the antenna structure serves to enhance bandwidth and improve overall performance. This slot is strategically positioned to influence the electromagnetic characteristics of the antenna, resulting in increased bandwidth and improved impedance matching across multiple frequency bands. Additionally, the depleted ground structure further contributes to enhanced performance by reducing unwanted radiation and minimizing the impact of surrounding environmental factors on the antenna’s efficiency. The proposed antenna design is characterized and analyzed using advanced simulation tools and measurement techniques to validate its performance across the target frequency bands. The textile nature of the antenna ensures flexibility and comfort, making it an ideal candidate for integration into wearable devices for seamless connectivity in diverse communication scenarios. The proposed antenna has impedance bandwidth of 70.7% covering the band from 1.495 to 3.13 GHz. The proposed antenna has maximum gain of 3.25 dB.</p>","PeriodicalId":49064,"journal":{"name":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40998-024-00729-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This research presents a novel design for a textile antenna with a nested orbicular shape, featuring a centered hexagonal slot and a depleted ground structure (DGS). The proposed antenna is specifically tailored to cater to the demanding requirements of Industrial, Scientific, and Medical (ISM) bands, as well as applications in Wi-Fi, Wireless Local Area Network (WLAN), and Bluetooth technologies. The nested orbicular configuration is chosen for its compactness and geometric versatility, allowing for efficient integration into wearable and textile-based communication systems. The incorporation of a centered hexagonal slot within the antenna structure serves to enhance bandwidth and improve overall performance. This slot is strategically positioned to influence the electromagnetic characteristics of the antenna, resulting in increased bandwidth and improved impedance matching across multiple frequency bands. Additionally, the depleted ground structure further contributes to enhanced performance by reducing unwanted radiation and minimizing the impact of surrounding environmental factors on the antenna’s efficiency. The proposed antenna design is characterized and analyzed using advanced simulation tools and measurement techniques to validate its performance across the target frequency bands. The textile nature of the antenna ensures flexibility and comfort, making it an ideal candidate for integration into wearable devices for seamless connectivity in diverse communication scenarios. The proposed antenna has impedance bandwidth of 70.7% covering the band from 1.495 to 3.13 GHz. The proposed antenna has maximum gain of 3.25 dB.
期刊介绍:
Transactions of Electrical Engineering is to foster the growth of scientific research in all branches of electrical engineering and its related grounds and to provide a medium by means of which the fruits of these researches may be brought to the attentionof the world’s scientific communities.
The journal has the focus on the frontier topics in the theoretical, mathematical, numerical, experimental and scientific developments in electrical engineering as well
as applications of established techniques to new domains in various electical engineering disciplines such as:
Bio electric, Bio mechanics, Bio instrument, Microwaves, Wave Propagation, Communication Theory, Channel Estimation, radar & sonar system, Signal Processing, image processing, Artificial Neural Networks, Data Mining and Machine Learning, Fuzzy Logic and Systems, Fuzzy Control, Optimal & Robust ControlNavigation & Estimation Theory, Power Electronics & Drives, Power Generation & Management The editors will welcome papers from all professors and researchers from universities, research centers,
organizations, companies and industries from all over the world in the hope that this will advance the scientific standards of the journal and provide a channel of communication between Iranian Scholars and their colleague in other parts of the world.