ASP-Completeness of Hamiltonicity in Grid Graphs, with Applications to Loop Puzzles

MIT Hardness Group, Josh Brunner, Della Hendrickson, Lily Chung, Erik D. Demaine, Andy Tockman
{"title":"ASP-Completeness of Hamiltonicity in Grid Graphs, with Applications to Loop Puzzles","authors":"MIT Hardness Group, Josh Brunner, Della Hendrickson, Lily Chung, Erik D. Demaine, Andy Tockman","doi":"arxiv-2405.08377","DOIUrl":null,"url":null,"abstract":"We prove that Hamiltonicity in maximum-degree-3 grid graphs (directed or\nundirected) is ASP-complete, i.e., it has a parsimonious reduction from every\nNP search problem (including a polynomial-time bijection between solutions). As\na consequence, given k Hamiltonian cycles, it is NP-complete to find another;\nand counting Hamiltonian cycles is #P-complete. If we require the grid graph's\nvertices to form a full $m \\times n$ rectangle, then we show that Hamiltonicity\nremains ASP-complete if the edges are directed or if we allow removing some\nedges (whereas including all undirected edges is known to be easy). These\nresults enable us to develop a stronger \"T-metacell\" framework for proving\nASP-completeness of rectangular puzzles, which requires building just a single\ngadget representing a degree-3 grid-graph vertex. We apply this general theory\nto prove ASP-completeness of 38 pencil-and-paper puzzles where the goal is to\ndraw a loop subject to given constraints: Slalom, Onsen-meguri, Mejilink,\nDetour, Tapa-Like Loop, Kouchoku, Icelom; Masyu, Yajilin, Nagareru, Castle\nWall, Moon or Sun, Country Road, Geradeweg, Maxi Loop, Mid-loop, Balance Loop,\nSimple Loop, Haisu, Reflect Link, Linesweeper; Vertex/Touch Slitherlink,\nDotchi-Loop, Ovotovata, Building Walk, Rail Pool, Disorderly Loop, Ant Mill,\nKoburin, Mukkonn Enn, Rassi Silai, (Crossing) Ichimaga, Tapa, Canal View, Aqre,\nand Paintarea. The last 14 of these puzzles were not even known to be NP-hard.\nAlong the way, we prove ASP-completeness of some simple forms of Tree-Residue\nVertex-Breaking (TRVB), including planar multigraphs with degree-6 breakable\nvertices, or with degree-4 breakable and degree-1 unbreakable vertices.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.08377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that Hamiltonicity in maximum-degree-3 grid graphs (directed or undirected) is ASP-complete, i.e., it has a parsimonious reduction from every NP search problem (including a polynomial-time bijection between solutions). As a consequence, given k Hamiltonian cycles, it is NP-complete to find another; and counting Hamiltonian cycles is #P-complete. If we require the grid graph's vertices to form a full $m \times n$ rectangle, then we show that Hamiltonicity remains ASP-complete if the edges are directed or if we allow removing some edges (whereas including all undirected edges is known to be easy). These results enable us to develop a stronger "T-metacell" framework for proving ASP-completeness of rectangular puzzles, which requires building just a single gadget representing a degree-3 grid-graph vertex. We apply this general theory to prove ASP-completeness of 38 pencil-and-paper puzzles where the goal is to draw a loop subject to given constraints: Slalom, Onsen-meguri, Mejilink, Detour, Tapa-Like Loop, Kouchoku, Icelom; Masyu, Yajilin, Nagareru, Castle Wall, Moon or Sun, Country Road, Geradeweg, Maxi Loop, Mid-loop, Balance Loop, Simple Loop, Haisu, Reflect Link, Linesweeper; Vertex/Touch Slitherlink, Dotchi-Loop, Ovotovata, Building Walk, Rail Pool, Disorderly Loop, Ant Mill, Koburin, Mukkonn Enn, Rassi Silai, (Crossing) Ichimaga, Tapa, Canal View, Aqre, and Paintarea. The last 14 of these puzzles were not even known to be NP-hard. Along the way, we prove ASP-completeness of some simple forms of Tree-Residue Vertex-Breaking (TRVB), including planar multigraphs with degree-6 breakable vertices, or with degree-4 breakable and degree-1 unbreakable vertices.
网格图中汉密尔顿性的 ASP 完备性及其在循环谜题中的应用
我们证明了最大度-3 网格图(有向或无向)中的哈密顿性是 ASP-完全的,即它可以从每一个 NP 搜索问题(包括解之间的多项式时间双射)简化而来。因此,给定 k 个哈密尔顿循环,再找一个哈密尔顿循环是 NP-完全的;而计算哈密尔顿循环是 #P- 完全的。如果我们要求网格图的顶点构成一个完整的 $m /times n$ 矩形,那么我们证明,如果边是有向的,或者如果我们允许删除一些边(而已知包括所有无向边是容易的),哈密顿性仍然是 ASP-完全的。这些结果使我们能够开发出一个更强大的 "T-元胞 "框架来证明矩形谜题的ASP完备性,它只需要构建一个代表3度网格图顶点的小工具。我们应用这一一般理论证明了 38 个纸笔谜题的 ASP 完备性,这些谜题的目标是在给定的约束条件下画出一个循环:这些谜题的目标是在给定的约束条件下画出一个循环:回旋、温泉-meguri、Mejilink、迂回、Tapa-Like Loop、Kouchoku、Icelom;Masyu、Yajilin、Nagareru、CastleWall、Moon or Sun、Country Road、Geradeweg、Maxi Loop、Mid-loop、Balance Loop、Simple Loop、Haisu、Reflect Link、Linesweeper;顶点/触摸滑动连线、点状连线、Ovotovata、建筑漫步、轨道池、混乱连线、蚂蚁磨坊、Koburin、Mukkonn Enn、Rassi Silai、(穿越)Ichimaga、Tapa、运河景观、Aqre 和 Paintarea。同时,我们还证明了一些简单形式的树残顶点分解(Tree-ResidueVertex-Breaking,TRVB)的 ASP 完备性,包括具有度数为 6 的可破顶点的平面多图,或具有度数为 4 的可破顶点和度数为 1 的不可破顶点的平面多图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信