Hilbert Functions and Low-Degree Randomness Extractors

Alexander Golovnev, Zeyu Guo, Pooya Hatami, Satyajeet Nagargoje, Chao Yan
{"title":"Hilbert Functions and Low-Degree Randomness Extractors","authors":"Alexander Golovnev, Zeyu Guo, Pooya Hatami, Satyajeet Nagargoje, Chao Yan","doi":"arxiv-2405.10277","DOIUrl":null,"url":null,"abstract":"For $S\\subseteq \\mathbb{F}^n$, consider the linear space of restrictions of\ndegree-$d$ polynomials to $S$. The Hilbert function of $S$, denoted\n$\\mathrm{h}_S(d,\\mathbb{F})$, is the dimension of this space. We obtain a tight\nlower bound on the smallest value of the Hilbert function of subsets $S$ of\narbitrary finite grids in $\\mathbb{F}^n$ with a fixed size $|S|$. We achieve\nthis by proving that this value coincides with a combinatorial quantity, namely\nthe smallest number of low Hamming weight points in a down-closed set of size\n$|S|$. Understanding the smallest values of Hilbert functions is closely related to\nthe study of degree-$d$ closure of sets, a notion introduced by Nie and Wang\n(Journal of Combinatorial Theory, Series A, 2015). We use bounds on the Hilbert\nfunction to obtain a tight bound on the size of degree-$d$ closures of subsets\nof $\\mathbb{F}_q^n$, which answers a question posed by Doron, Ta-Shma, and Tell\n(Computational Complexity, 2022). We use the bounds on the Hilbert function and degree-$d$ closure of sets to\nprove that a random low-degree polynomial is an extractor for samplable\nrandomness sources. Most notably, we prove the existence of low-degree\nextractors and dispersers for sources generated by constant-degree polynomials\nand polynomial-size circuits. Until recently, even the existence of arbitrary\ndeterministic extractors for such sources was not known.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.10277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For $S\subseteq \mathbb{F}^n$, consider the linear space of restrictions of degree-$d$ polynomials to $S$. The Hilbert function of $S$, denoted $\mathrm{h}_S(d,\mathbb{F})$, is the dimension of this space. We obtain a tight lower bound on the smallest value of the Hilbert function of subsets $S$ of arbitrary finite grids in $\mathbb{F}^n$ with a fixed size $|S|$. We achieve this by proving that this value coincides with a combinatorial quantity, namely the smallest number of low Hamming weight points in a down-closed set of size $|S|$. Understanding the smallest values of Hilbert functions is closely related to the study of degree-$d$ closure of sets, a notion introduced by Nie and Wang (Journal of Combinatorial Theory, Series A, 2015). We use bounds on the Hilbert function to obtain a tight bound on the size of degree-$d$ closures of subsets of $\mathbb{F}_q^n$, which answers a question posed by Doron, Ta-Shma, and Tell (Computational Complexity, 2022). We use the bounds on the Hilbert function and degree-$d$ closure of sets to prove that a random low-degree polynomial is an extractor for samplable randomness sources. Most notably, we prove the existence of low-degree extractors and dispersers for sources generated by constant-degree polynomials and polynomial-size circuits. Until recently, even the existence of arbitrary deterministic extractors for such sources was not known.
希尔伯特函数和低度随机性提取器
对于 $S\subseteq \mathbb{F}^n$,考虑degree-$d$多项式对 $S$ 的限制的线性空间。$S$的希尔伯特函数,表示为$\mathrm{h}_S(d,\mathbb{F})$,是这个空间的维数。我们得到了$\mathbb{F}^n$中任意有限网格的子集$S$的希尔伯特函数的最小值的下限。我们通过证明这个值与一个组合量(即大小为$|S|$的下闭集中低汉明权重点的最小数目)重合来实现这一目标。理解希尔伯特函数的最小值与研究集合的度-$d$闭合密切相关,这一概念由聂和王(《组合理论学报》,A 辑,2015 年)引入。我们利用希尔伯特函数的边界,得到了$\mathbb{F}_q^n$子集的度-$d$闭合大小的严格边界,这回答了Doron、Ta-Shma和Tell(《计算复杂性》,2022年)提出的一个问题。我们利用集合的希尔伯特函数和度-$d$闭包的边界,证明随机低度多项式是采样随机性源的提取器。最值得注意的是,我们证明了恒定度多项式和多项式大小电路产生的源的低度抽取器和分散器的存在性。直到最近,人们甚至还不知道存在针对此类源的任意确定性抽取器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信