Weighted weak-type inequalities for maximal operators and singular integrals

David Cruz-Uribe, Brandon Sweeting
{"title":"Weighted weak-type inequalities for maximal operators and singular integrals","authors":"David Cruz-Uribe, Brandon Sweeting","doi":"10.1007/s13163-024-00492-7","DOIUrl":null,"url":null,"abstract":"<p>We prove quantitative, one-weight, weak-type estimates for maximal operators, singular integrals, fractional maximal operators and fractional integral operators. We consider a kind of weak-type inequality that was first studied by Muckenhoupt and Wheeden (Indiana Univ. Math. J. 26(5):801–816, 1977) and later in Cruz-Uribe et al. (Int. Math. Res. Not. 30:1849–1871, 2005). We obtain quantitative estimates for these operators in both the scalar and matrix weighted setting using sparse domination techniques. Our results extend those obtained by Cruz-Uribe et al. (Rev. Mat. Iberoam. 37(4):1513–1538, 2021) for singular integrals and maximal operators when <span>\\(p=1\\)</span>.</p>","PeriodicalId":501429,"journal":{"name":"Revista Matemática Complutense","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matemática Complutense","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13163-024-00492-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove quantitative, one-weight, weak-type estimates for maximal operators, singular integrals, fractional maximal operators and fractional integral operators. We consider a kind of weak-type inequality that was first studied by Muckenhoupt and Wheeden (Indiana Univ. Math. J. 26(5):801–816, 1977) and later in Cruz-Uribe et al. (Int. Math. Res. Not. 30:1849–1871, 2005). We obtain quantitative estimates for these operators in both the scalar and matrix weighted setting using sparse domination techniques. Our results extend those obtained by Cruz-Uribe et al. (Rev. Mat. Iberoam. 37(4):1513–1538, 2021) for singular integrals and maximal operators when \(p=1\).

最大算子和奇异积分的加权弱型不等式
我们证明了最大算子、奇异积分、分数最大算子和分数积分算子的定量、一重、弱式估计。我们考虑了一种弱型不等式,该不等式最早由 Muckenhoupt 和 Wheeden 研究(Indiana Univ.J.26(5):801-816,1977)以及后来的 Cruz-Uribe 等人(Int. Math. Res. Not.)我们利用稀疏支配技术,在标量和矩阵加权设置中获得了这些算子的定量估计。我们的结果扩展了克鲁兹-乌里韦等人 (Rev. Mat. Iberoam.Iberoam.37(4):1513-1538,2021)在 \(p=1\) 时对于奇异积分和最大算子得到的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信