Márton Benedek, Péter Biró, Daniel Paulusma, Xin Ye
{"title":"Computing balanced solutions for large international kidney exchange schemes","authors":"Márton Benedek, Péter Biró, Daniel Paulusma, Xin Ye","doi":"10.1007/s10458-024-09645-w","DOIUrl":null,"url":null,"abstract":"<div><p>To overcome incompatibility issues, kidney patients may swap their donors. In international kidney exchange programmes (IKEPs), countries merge their national patient–donor pools. We consider a recently introduced credit system. In each round, countries are given an initial “fair” allocation of the total number of kidney transplants. This allocation is adjusted by a credit function yielding a target allocation. The goal is to find a solution that approaches the target allocation as closely as possible, to ensure long-term stability of the international pool. As solutions, we use maximum matchings that lexicographically minimize the country deviations from the target allocation. We perform, for the first time, a computational study for a <i>large</i> number of countries. For the initial allocations we use two easy-to-compute solution concepts, the benefit value and the contribution value, and four classical but hard-to-compute concepts, the Shapley value, nucleolus, Banzhaf value and tau value. By using state-of-the-art software we show that the latter four concepts are now within reach for IKEPs of up to fifteen countries. Our experiments show that using lexicographically minimal maximum matchings instead of ones that only minimize the largest deviation from the target allocation (as previously done) may make an IKEP up to 54% more balanced.</p></div>","PeriodicalId":55586,"journal":{"name":"Autonomous Agents and Multi-Agent Systems","volume":"38 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10458-024-09645-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Agents and Multi-Agent Systems","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10458-024-09645-w","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
To overcome incompatibility issues, kidney patients may swap their donors. In international kidney exchange programmes (IKEPs), countries merge their national patient–donor pools. We consider a recently introduced credit system. In each round, countries are given an initial “fair” allocation of the total number of kidney transplants. This allocation is adjusted by a credit function yielding a target allocation. The goal is to find a solution that approaches the target allocation as closely as possible, to ensure long-term stability of the international pool. As solutions, we use maximum matchings that lexicographically minimize the country deviations from the target allocation. We perform, for the first time, a computational study for a large number of countries. For the initial allocations we use two easy-to-compute solution concepts, the benefit value and the contribution value, and four classical but hard-to-compute concepts, the Shapley value, nucleolus, Banzhaf value and tau value. By using state-of-the-art software we show that the latter four concepts are now within reach for IKEPs of up to fifteen countries. Our experiments show that using lexicographically minimal maximum matchings instead of ones that only minimize the largest deviation from the target allocation (as previously done) may make an IKEP up to 54% more balanced.
期刊介绍:
This is the official journal of the International Foundation for Autonomous Agents and Multi-Agent Systems. It provides a leading forum for disseminating significant original research results in the foundations, theory, development, analysis, and applications of autonomous agents and multi-agent systems. Coverage in Autonomous Agents and Multi-Agent Systems includes, but is not limited to:
Agent decision-making architectures and their evaluation, including: cognitive models; knowledge representation; logics for agency; ontological reasoning; planning (single and multi-agent); reasoning (single and multi-agent)
Cooperation and teamwork, including: distributed problem solving; human-robot/agent interaction; multi-user/multi-virtual-agent interaction; coalition formation; coordination
Agent communication languages, including: their semantics, pragmatics, and implementation; agent communication protocols and conversations; agent commitments; speech act theory
Ontologies for agent systems, agents and the semantic web, agents and semantic web services, Grid-based systems, and service-oriented computing
Agent societies and societal issues, including: artificial social systems; environments, organizations and institutions; ethical and legal issues; privacy, safety and security; trust, reliability and reputation
Agent-based system development, including: agent development techniques, tools and environments; agent programming languages; agent specification or validation languages
Agent-based simulation, including: emergent behavior; participatory simulation; simulation techniques, tools and environments; social simulation
Agreement technologies, including: argumentation; collective decision making; judgment aggregation and belief merging; negotiation; norms
Economic paradigms, including: auction and mechanism design; bargaining and negotiation; economically-motivated agents; game theory (cooperative and non-cooperative); social choice and voting
Learning agents, including: computational architectures for learning agents; evolution, adaptation; multi-agent learning.
Robotic agents, including: integrated perception, cognition, and action; cognitive robotics; robot planning (including action and motion planning); multi-robot systems.
Virtual agents, including: agents in games and virtual environments; companion and coaching agents; modeling personality, emotions; multimodal interaction; verbal and non-verbal expressiveness
Significant, novel applications of agent technology
Comprehensive reviews and authoritative tutorials of research and practice in agent systems
Comprehensive and authoritative reviews of books dealing with agents and multi-agent systems.