{"title":"A calibrated data-driven approach for small area estimation using big data","authors":"Siu-Ming Tam, Shaila Sharmeen","doi":"10.1111/anzs.12414","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Where the response variable in a big dataset is consistent with the variable of interest for small area estimation, the big data by itself can provide the estimates for small areas. These estimates are often subject to the coverage and measurement error bias inherited from the big data. However, if a probability survey of the same variable of interest is available, the survey data can be used as a training dataset to develop an algorithm to impute for the data missed by the big data and adjust for measurement errors. In this paper, we outline a methodology for such imputations based on an <i>k</i>-nearest neighbours (kNN) algorithm calibrated to an asymptotically design-unbiased estimate of the national total, and illustrate the use of a training dataset to estimate the imputation bias and the “fixed-<i>k</i> asymptotic” bootstrap to estimate the variance of the small area hybrid estimator. We illustrate the methodology of this paper using a public-use dataset and use it to compare the accuracy and precision of our hybrid estimator with the Fay–Harriot (FH) estimator. Finally, we also examine numerically the accuracy and precision of the FH estimator when the auxiliary variables used in the linking models are subject to undercoverage errors.</p>\n </div>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":"66 2","pages":"125-145"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian & New Zealand Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12414","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Where the response variable in a big dataset is consistent with the variable of interest for small area estimation, the big data by itself can provide the estimates for small areas. These estimates are often subject to the coverage and measurement error bias inherited from the big data. However, if a probability survey of the same variable of interest is available, the survey data can be used as a training dataset to develop an algorithm to impute for the data missed by the big data and adjust for measurement errors. In this paper, we outline a methodology for such imputations based on an k-nearest neighbours (kNN) algorithm calibrated to an asymptotically design-unbiased estimate of the national total, and illustrate the use of a training dataset to estimate the imputation bias and the “fixed-k asymptotic” bootstrap to estimate the variance of the small area hybrid estimator. We illustrate the methodology of this paper using a public-use dataset and use it to compare the accuracy and precision of our hybrid estimator with the Fay–Harriot (FH) estimator. Finally, we also examine numerically the accuracy and precision of the FH estimator when the auxiliary variables used in the linking models are subject to undercoverage errors.
期刊介绍:
The Australian & New Zealand Journal of Statistics is an international journal managed jointly by the Statistical Society of Australia and the New Zealand Statistical Association. Its purpose is to report significant and novel contributions in statistics, ranging across articles on statistical theory, methodology, applications and computing. The journal has a particular focus on statistical techniques that can be readily applied to real-world problems, and on application papers with an Australasian emphasis. Outstanding articles submitted to the journal may be selected as Discussion Papers, to be read at a meeting of either the Statistical Society of Australia or the New Zealand Statistical Association.
The main body of the journal is divided into three sections.
The Theory and Methods Section publishes papers containing original contributions to the theory and methodology of statistics, econometrics and probability, and seeks papers motivated by a real problem and which demonstrate the proposed theory or methodology in that situation. There is a strong preference for papers motivated by, and illustrated with, real data.
The Applications Section publishes papers demonstrating applications of statistical techniques to problems faced by users of statistics in the sciences, government and industry. A particular focus is the application of newly developed statistical methodology to real data and the demonstration of better use of established statistical methodology in an area of application. It seeks to aid teachers of statistics by placing statistical methods in context.
The Statistical Computing Section publishes papers containing new algorithms, code snippets, or software descriptions (for open source software only) which enhance the field through the application of computing. Preference is given to papers featuring publically available code and/or data, and to those motivated by statistical methods for practical problems.