A calibrated data-driven approach for small area estimation using big data

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Siu-Ming Tam, Shaila Sharmeen
{"title":"A calibrated data-driven approach for small area estimation using big data","authors":"Siu-Ming Tam,&nbsp;Shaila Sharmeen","doi":"10.1111/anzs.12414","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Where the response variable in a big dataset is consistent with the variable of interest for small area estimation, the big data by itself can provide the estimates for small areas. These estimates are often subject to the coverage and measurement error bias inherited from the big data. However, if a probability survey of the same variable of interest is available, the survey data can be used as a training dataset to develop an algorithm to impute for the data missed by the big data and adjust for measurement errors. In this paper, we outline a methodology for such imputations based on an <i>k</i>-nearest neighbours (kNN) algorithm calibrated to an asymptotically design-unbiased estimate of the national total, and illustrate the use of a training dataset to estimate the imputation bias and the “fixed-<i>k</i> asymptotic” bootstrap to estimate the variance of the small area hybrid estimator. We illustrate the methodology of this paper using a public-use dataset and use it to compare the accuracy and precision of our hybrid estimator with the Fay–Harriot (FH) estimator. Finally, we also examine numerically the accuracy and precision of the FH estimator when the auxiliary variables used in the linking models are subject to undercoverage errors.</p>\n </div>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":"66 2","pages":"125-145"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian & New Zealand Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12414","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Where the response variable in a big dataset is consistent with the variable of interest for small area estimation, the big data by itself can provide the estimates for small areas. These estimates are often subject to the coverage and measurement error bias inherited from the big data. However, if a probability survey of the same variable of interest is available, the survey data can be used as a training dataset to develop an algorithm to impute for the data missed by the big data and adjust for measurement errors. In this paper, we outline a methodology for such imputations based on an k-nearest neighbours (kNN) algorithm calibrated to an asymptotically design-unbiased estimate of the national total, and illustrate the use of a training dataset to estimate the imputation bias and the “fixed-k asymptotic” bootstrap to estimate the variance of the small area hybrid estimator. We illustrate the methodology of this paper using a public-use dataset and use it to compare the accuracy and precision of our hybrid estimator with the Fay–Harriot (FH) estimator. Finally, we also examine numerically the accuracy and precision of the FH estimator when the auxiliary variables used in the linking models are subject to undercoverage errors.

利用大数据进行小面积估算的校准数据驱动方法
摘要当大数据集中的响应变量与小地区估算中的相关变量一致时,大数据本身就可以提供小地区的估算值。这些估算值通常会受到大数据的覆盖范围和测量误差偏差的影响。不过,如果有对相同相关变量的概率调查,则可将调查数据用作训练数据集,以开发算法来估算大数据遗漏的数据并调整测量误差。在本文中,我们概述了一种基于 k 近邻(kNN)算法的此类估算方法,该算法被校准为对全国总量的渐近设计无偏估计,并说明了如何使用训练数据集来估算估算偏差,以及如何使用 "固定-k 渐近 "自举法来估算小范围混合估算器的方差。我们使用一个公共使用数据集来说明本文的方法,并用它来比较我们的混合估算器与费-哈里奥特(FH)估算器的准确性和精确度。最后,我们还从数值上检验了当连接模型中使用的辅助变量受到覆盖不足误差影响时 FH 估算器的准确性和精确度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Australian & New Zealand Journal of Statistics
Australian & New Zealand Journal of Statistics 数学-统计学与概率论
CiteScore
1.30
自引率
9.10%
发文量
31
审稿时长
>12 weeks
期刊介绍: The Australian & New Zealand Journal of Statistics is an international journal managed jointly by the Statistical Society of Australia and the New Zealand Statistical Association. Its purpose is to report significant and novel contributions in statistics, ranging across articles on statistical theory, methodology, applications and computing. The journal has a particular focus on statistical techniques that can be readily applied to real-world problems, and on application papers with an Australasian emphasis. Outstanding articles submitted to the journal may be selected as Discussion Papers, to be read at a meeting of either the Statistical Society of Australia or the New Zealand Statistical Association. The main body of the journal is divided into three sections. The Theory and Methods Section publishes papers containing original contributions to the theory and methodology of statistics, econometrics and probability, and seeks papers motivated by a real problem and which demonstrate the proposed theory or methodology in that situation. There is a strong preference for papers motivated by, and illustrated with, real data. The Applications Section publishes papers demonstrating applications of statistical techniques to problems faced by users of statistics in the sciences, government and industry. A particular focus is the application of newly developed statistical methodology to real data and the demonstration of better use of established statistical methodology in an area of application. It seeks to aid teachers of statistics by placing statistical methods in context. The Statistical Computing Section publishes papers containing new algorithms, code snippets, or software descriptions (for open source software only) which enhance the field through the application of computing. Preference is given to papers featuring publically available code and/or data, and to those motivated by statistical methods for practical problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信