Sebastian A Ramos, Leonard J Mueller, Gregory J. O. Beran
{"title":"The interplay of density functional selection and crystal structure for accurate NMR chemical shift predictions","authors":"Sebastian A Ramos, Leonard J Mueller, Gregory J. O. Beran","doi":"10.1039/d4fd00072b","DOIUrl":null,"url":null,"abstract":"Ab initio chemical shift prediction plays a central role in nuclear magnetic resonance (NMR) crystallography, and the accuracy with which chemical shifts can be predicted relative to experiment impacts the confidence with which structures can be assigned. For organic crystals, periodic density functional theory calculations with the gauge-including projector augmented wave (GIPAW) approximation and the PBE functional are widely used at present. Many previous studies have examined how using more advanced density functionals can increase the accuracy of predicted chemical shifts relative to experiment, but nearly all of those studies employed crystal structures that were optimized with generalized-gradient approximation (GGA) functionals. Here, we investigate how the accuracy of the predicted chemical shifts in organic crystals is affected by replacing GGA-level PBE-D3(BJ) crystal geometries with more accurate hybrid functional PBE0-D3(BJ) ones. Based on benchmark data sets containing 132 <small><sup>13</sup></small>C and 35 <small><sup>15</sup></small>N chemical shifts plus case studies on testosterone, acetaminophen, and phenobarbital, we find that switching from GGA-level geometries and chemical shifts to hybrid functional ones reduces <small><sup>13</sup></small>C and <small><sup>15</sup></small>N chemical shift errors by ~40-60% versus experiment. However, most of the improvement stems from the use of the hybrid functional for the chemical shift calculations, rather than from the refined geometries. In addition, even with the improved geometries, we find that double-hybrid functionals still do not systematically increase chemical shift agreement with experiment beyond what hybrid functionals provide. In the end, these results suggest that the combination of GGA-level crystal structures and hybrid-functional chemical shifts represents a particularly cost-effective combination for NMR crystallography in organic systems.","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":"19 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4fd00072b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ab initio chemical shift prediction plays a central role in nuclear magnetic resonance (NMR) crystallography, and the accuracy with which chemical shifts can be predicted relative to experiment impacts the confidence with which structures can be assigned. For organic crystals, periodic density functional theory calculations with the gauge-including projector augmented wave (GIPAW) approximation and the PBE functional are widely used at present. Many previous studies have examined how using more advanced density functionals can increase the accuracy of predicted chemical shifts relative to experiment, but nearly all of those studies employed crystal structures that were optimized with generalized-gradient approximation (GGA) functionals. Here, we investigate how the accuracy of the predicted chemical shifts in organic crystals is affected by replacing GGA-level PBE-D3(BJ) crystal geometries with more accurate hybrid functional PBE0-D3(BJ) ones. Based on benchmark data sets containing 132 13C and 35 15N chemical shifts plus case studies on testosterone, acetaminophen, and phenobarbital, we find that switching from GGA-level geometries and chemical shifts to hybrid functional ones reduces 13C and 15N chemical shift errors by ~40-60% versus experiment. However, most of the improvement stems from the use of the hybrid functional for the chemical shift calculations, rather than from the refined geometries. In addition, even with the improved geometries, we find that double-hybrid functionals still do not systematically increase chemical shift agreement with experiment beyond what hybrid functionals provide. In the end, these results suggest that the combination of GGA-level crystal structures and hybrid-functional chemical shifts represents a particularly cost-effective combination for NMR crystallography in organic systems.