Multiplicities in the Length Spectrum and Growth Rate of Salem Numbers

Alexandr Grebennikov
{"title":"Multiplicities in the Length Spectrum and Growth Rate of Salem Numbers","authors":"Alexandr Grebennikov","doi":"10.1007/s00574-024-00398-4","DOIUrl":null,"url":null,"abstract":"<p>We prove that mean multiplicities in the length spectrum of a non-compact arithmetic hyperbolic orbifold of dimension <span>\\(n \\geqslant 4\\)</span> have exponential growth rate </p><span>$$\\begin{aligned} \\langle g(L) \\rangle \\geqslant c \\frac{e^{([n/2] - 1)L}}{L^{1 + \\delta _{5, 7}(n) }}, \\end{aligned}$$</span><p>extending the analogous result for even dimensions of Belolipetsky, Lalín, Murillo and Thompson. Our proof is based on the study of (square-rootable) Salem numbers. As a counterpart, we also prove an asymptotic formula for the distribution of square-rootable Salem numbers by adapting the argument of Götze and Gusakova. It shows that one can not obtain a better estimate on mean multiplicities using our approach.</p>","PeriodicalId":501417,"journal":{"name":"Bulletin of the Brazilian Mathematical Society, New Series","volume":"220 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Brazilian Mathematical Society, New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00574-024-00398-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that mean multiplicities in the length spectrum of a non-compact arithmetic hyperbolic orbifold of dimension \(n \geqslant 4\) have exponential growth rate

$$\begin{aligned} \langle g(L) \rangle \geqslant c \frac{e^{([n/2] - 1)L}}{L^{1 + \delta _{5, 7}(n) }}, \end{aligned}$$

extending the analogous result for even dimensions of Belolipetsky, Lalín, Murillo and Thompson. Our proof is based on the study of (square-rootable) Salem numbers. As a counterpart, we also prove an asymptotic formula for the distribution of square-rootable Salem numbers by adapting the argument of Götze and Gusakova. It shows that one can not obtain a better estimate on mean multiplicities using our approach.

萨林数长度谱中的倍数和增长率
我们证明,维数(n)的非紧凑算术双曲轨道的长度谱中的均值乘数具有指数增长率$$\begin{aligned}。\langle g(L) \rangle \geqslant c \frac{e^{([n/2] - 1)L}}{L^{1 + \delta _{5, 7}(n) }}, \end{aligned}$$ 扩展了贝洛里佩茨基、拉林、穆里略和汤普森对偶数维的类似结果。我们的证明基于对(可平方根)萨伦数的研究。作为对应,我们还通过改编格茨和古萨科娃的论证,证明了可平方根萨勒姆数分布的渐近公式。这表明,用我们的方法无法获得对平均乘数的更好估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信