The Best Design for a Direct Evaporative Cooling System Based on Pressure Drop at Desired Saturation Efficiency: A Cost–Benefit Optimization

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Pedram Alamdari, Mousa Rejvani, Samaneh Alinejadi, Seyfolah Saedodin, Elias Toozandeh Jani
{"title":"The Best Design for a Direct Evaporative Cooling System Based on Pressure Drop at Desired Saturation Efficiency: A Cost–Benefit Optimization","authors":"Pedram Alamdari, Mousa Rejvani, Samaneh Alinejadi, Seyfolah Saedodin, Elias Toozandeh Jani","doi":"10.1007/s40997-023-00729-8","DOIUrl":null,"url":null,"abstract":"<p>In this study, saturation efficiency and pressure drop, two critical parameters for the direct evaporative cooling phenomenon, were numerically investigated and optimized. For this purpose, the direct evaporative cooling process was simulated at inlet air velocities in the range of 1–3 m/s on different thicknesses of CELdek 7090 evaporative cooling pad from 100 to 300 mm. The mathematical model of pressure drop and saturation efficiency was developed by analyzing variance at <i>R</i>-squared values of 99.53% and 99.99%, respectively. Finally, the non-dominated sorting genetic algorithm II (NSGA-II) was applied to minimize the pressure drop while maximizing the saturation efficiency simultaneously. The results indicate that applying mathematical models makes it possible to predict the saturation efficiency and pressure drop of direct evaporative cooling systems with a 4% and 7.9% deviation, respectively. It can also be concluded that the pad thickness effect is more significant on the saturation efficiency than on the pressure drop. On the other hand, the inlet velocity has a greater impact on the pressure drop. NSGA-II optimization demonstrated that, regardless of the pad thickness, optimal saturation efficiency and pressure drop were obtained at the inlet air velocity of 1 m/s. Accordingly, when using direct evaporative cooling systems, efficiency and pressure drop can be optimized whenever the fan is set at a low speed. Depending on the researchers’ and designers’ goals, the findings of this research can be used in the design of direct evaporative cooling systems for different applications to achieve maximal saturation efficiency at the minimum possible energy consumption.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40997-023-00729-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, saturation efficiency and pressure drop, two critical parameters for the direct evaporative cooling phenomenon, were numerically investigated and optimized. For this purpose, the direct evaporative cooling process was simulated at inlet air velocities in the range of 1–3 m/s on different thicknesses of CELdek 7090 evaporative cooling pad from 100 to 300 mm. The mathematical model of pressure drop and saturation efficiency was developed by analyzing variance at R-squared values of 99.53% and 99.99%, respectively. Finally, the non-dominated sorting genetic algorithm II (NSGA-II) was applied to minimize the pressure drop while maximizing the saturation efficiency simultaneously. The results indicate that applying mathematical models makes it possible to predict the saturation efficiency and pressure drop of direct evaporative cooling systems with a 4% and 7.9% deviation, respectively. It can also be concluded that the pad thickness effect is more significant on the saturation efficiency than on the pressure drop. On the other hand, the inlet velocity has a greater impact on the pressure drop. NSGA-II optimization demonstrated that, regardless of the pad thickness, optimal saturation efficiency and pressure drop were obtained at the inlet air velocity of 1 m/s. Accordingly, when using direct evaporative cooling systems, efficiency and pressure drop can be optimized whenever the fan is set at a low speed. Depending on the researchers’ and designers’ goals, the findings of this research can be used in the design of direct evaporative cooling systems for different applications to achieve maximal saturation efficiency at the minimum possible energy consumption.

Abstract Image

基于所需饱和效率下的压降的直接蒸发冷却系统最佳设计:成本效益优化
本研究对直接蒸发冷却现象的两个关键参数--饱和效率和压降进行了数值研究和优化。为此,在进气速度为 1-3 m/s 的范围内,在厚度为 100 至 300 mm 的不同 CELdek 7090 蒸发冷却垫上模拟了直接蒸发冷却过程。通过方差分析,建立了压降和饱和效率的数学模型,R 方值分别为 99.53% 和 99.99%。最后,应用非支配排序遗传算法 II(NSGA-II)使压降最小化,同时使饱和效率最大化。结果表明,应用数学模型可以预测直接蒸发冷却系统的饱和效率和压降,偏差分别为 4% 和 7.9%。还可以得出结论,垫层厚度对饱和效率的影响比对压降的影响更大。另一方面,入口速度对压力降的影响更大。NSGA-II 优化结果表明,无论衬垫厚度如何,在进气速度为 1 米/秒时都能获得最佳饱和效率和压降。因此,在使用直接蒸发冷却系统时,只要将风扇设置为低速,就能优化效率和压降。根据研究人员和设计人员的目标,本研究成果可用于设计不同用途的直接蒸发冷却系统,从而以尽可能少的能耗获得最大的饱和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信