Geometry of the parabolic subset of generically immersed 3-manifolds in $$\mathbb {R}^4$$

IF 1.2 3区 数学 Q1 MATHEMATICS
A. C. Nabarro, M. C. Romero Fuster, M. C. Zanardo
{"title":"Geometry of the parabolic subset of generically immersed 3-manifolds in $$\\mathbb {R}^4$$","authors":"A. C. Nabarro, M. C. Romero Fuster, M. C. Zanardo","doi":"10.1007/s40687-024-00450-1","DOIUrl":null,"url":null,"abstract":"<p>The parabolic subset of a 3-manifold generically immersed in <span>\\(\\mathbb {R}^4\\)</span> is a surface. We analyze in this study the generic geometrical behavior of such surface, considered as a submanifold of <span>\\(\\mathbb {R}^4\\)</span>. Typical Singularity Theory techniques based on the analysis of the family of height functions are applied in order to describe the geometrical characterizations of different singularity types.</p>","PeriodicalId":48561,"journal":{"name":"Research in the Mathematical Sciences","volume":"52 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in the Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40687-024-00450-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The parabolic subset of a 3-manifold generically immersed in \(\mathbb {R}^4\) is a surface. We analyze in this study the generic geometrical behavior of such surface, considered as a submanifold of \(\mathbb {R}^4\). Typical Singularity Theory techniques based on the analysis of the family of height functions are applied in order to describe the geometrical characterizations of different singularity types.

$$\mathbb{R}^4$$中泛浸3-manifolds的抛物线子集几何学
一般浸没在 \(\mathbb {R}^4\) 中的 3-manifold的抛物面子集是一个曲面。在本研究中,我们分析了作为 \(\mathbb {R}^4\) 子曲面的这种曲面的一般几何行为。为了描述不同奇点类型的几何特征,我们应用了基于高度函数族分析的典型奇点理论技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Research in the Mathematical Sciences
Research in the Mathematical Sciences Mathematics-Computational Mathematics
CiteScore
2.00
自引率
8.30%
发文量
58
期刊介绍: Research in the Mathematical Sciences is an international, peer-reviewed hybrid journal covering the full scope of Theoretical Mathematics, Applied Mathematics, and Theoretical Computer Science. The Mission of the Journal is to publish high-quality original articles that make a significant contribution to the research areas of both theoretical and applied mathematics and theoretical computer science. This journal is an efficient enterprise where the editors play a central role in soliciting the best research papers, and where editorial decisions are reached in a timely fashion. Research in the Mathematical Sciences does not have a length restriction and encourages the submission of longer articles in which more complex and detailed analysis and proofing of theorems is required. It also publishes shorter research communications (Letters) covering nascent research in some of the hottest areas of mathematical research. This journal will publish the highest quality papers in all of the traditional areas of applied and theoretical areas of mathematics and computer science, and it will actively seek to publish seminal papers in the most emerging and interdisciplinary areas in all of the mathematical sciences. Research in the Mathematical Sciences wishes to lead the way by promoting the highest quality research of this type.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信