On normal Seshadri stratifications

IF 0.5 4区 数学 Q3 MATHEMATICS
Rocco Chirivì, Xin Fang, Peter Littelmann
{"title":"On normal Seshadri stratifications","authors":"Rocco Chirivì, Xin Fang, Peter Littelmann","doi":"10.4310/pamq.2024.v20.n3.a3","DOIUrl":null,"url":null,"abstract":"The existence of a Seshadri stratification on an embedded projective variety provides a flat degeneration of the variety to a union of projective toric varieties, called a semi-toric variety. Such a stratification is said to be normal when each irreducible component of the semi-toric variety is a normal toric variety. In this case, we show that a Gröbner basis of the defining ideal of the semi-toric variety can be lifted to define the embedded projective variety. Applications to Koszul and Gorenstein properties are discussed. Relations between LS‑algebras and certain Seshadri stratifications are studied.","PeriodicalId":54526,"journal":{"name":"Pure and Applied Mathematics Quarterly","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Mathematics Quarterly","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2024.v20.n3.a3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The existence of a Seshadri stratification on an embedded projective variety provides a flat degeneration of the variety to a union of projective toric varieties, called a semi-toric variety. Such a stratification is said to be normal when each irreducible component of the semi-toric variety is a normal toric variety. In this case, we show that a Gröbner basis of the defining ideal of the semi-toric variety can be lifted to define the embedded projective variety. Applications to Koszul and Gorenstein properties are discussed. Relations between LS‑algebras and certain Seshadri stratifications are studied.
关于正常的塞沙德里分层
内嵌射影变种上存在的塞沙德里分层提供了变种的平面退化,使其成为射影环变种的结合,称为半oric变种。当半oric 变的每个不可还原分量都是一个正常的 toric 变时,这种分层就被称为正常分层。在这种情况下,我们证明了半oric 变的定义理想的格罗伯纳基可以被提升以定义嵌入的射影变。我们还讨论了科斯祖尔和戈伦斯坦性质的应用。此外,我们还研究了 LS 后代数与某些 Seshadri 分层之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
30
审稿时长
>12 weeks
期刊介绍: Publishes high-quality, original papers on all fields of mathematics. To facilitate fruitful interchanges between mathematicians from different regions and specialties, and to effectively disseminate new breakthroughs in mathematics, the journal welcomes well-written submissions from all significant areas of mathematics. The editors are committed to promoting the highest quality of mathematical scholarship.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信