Anders Angerbjörn, Kerstin Lidén, James D. Roth, Fredrik Dalerum
{"title":"Evaluating the use of marine subsidies by Arctic foxes without direct coastal access; insights from stable isotopes","authors":"Anders Angerbjörn, Kerstin Lidén, James D. Roth, Fredrik Dalerum","doi":"10.1007/s00300-024-03256-7","DOIUrl":null,"url":null,"abstract":"<p>The trophic structures of tundra ecosystems are often viewed as a result of local terrestrial primary productivity. However, other resources can be brought in through long-distant migrants or be directly accessible in coastal areas. Hence, trophic structures may deviate from predictions based on local terrestrial resources. The Arctic fox (<i>Vulpes lagopus</i>) is a small canid that may use marine resources when available. We used stable isotope values in Arctic fox fur and literature data on potential prey to evaluate Arctic fox summer resource use in a mountain tundra without coastal access. The dietary contribution of local prey, presumably mostly rodents, declined with declining rodent abundance, with a subsequent increased contribution of migratory prey relying on marine resources. Stable isotope values did not differ between this terrestrial area and an area with direct coastal access during years of high rodent abundance, but isotope values during low rodent abundances suggested less marine input than in a coastal population feeding primarily on marine prey. Our study shows that marine resources may be used by animals in areas without any coastal access, and we highlight that such partial coupling of ecosystems must be included in the modeling and assessments of tundra environments.</p>","PeriodicalId":20362,"journal":{"name":"Polar Biology","volume":"42 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polar Biology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00300-024-03256-7","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
The trophic structures of tundra ecosystems are often viewed as a result of local terrestrial primary productivity. However, other resources can be brought in through long-distant migrants or be directly accessible in coastal areas. Hence, trophic structures may deviate from predictions based on local terrestrial resources. The Arctic fox (Vulpes lagopus) is a small canid that may use marine resources when available. We used stable isotope values in Arctic fox fur and literature data on potential prey to evaluate Arctic fox summer resource use in a mountain tundra without coastal access. The dietary contribution of local prey, presumably mostly rodents, declined with declining rodent abundance, with a subsequent increased contribution of migratory prey relying on marine resources. Stable isotope values did not differ between this terrestrial area and an area with direct coastal access during years of high rodent abundance, but isotope values during low rodent abundances suggested less marine input than in a coastal population feeding primarily on marine prey. Our study shows that marine resources may be used by animals in areas without any coastal access, and we highlight that such partial coupling of ecosystems must be included in the modeling and assessments of tundra environments.
期刊介绍:
Polar Biology publishes Original Papers, Reviews, and Short Notes and is the focal point for biologists working in polar regions. It is also of interest to scientists working in biology in general, ecology and physiology, as well as in oceanography and climatology related to polar life. Polar Biology presents results of studies in plants, animals, and micro-organisms of marine, limnic and terrestrial habitats in polar and subpolar regions of both hemispheres.
Taxonomy/ Biogeography
Life History
Spatio-temporal Patterns in Abundance and Diversity
Ecological Interactions
Trophic Ecology
Ecophysiology/ Biochemistry of Adaptation
Biogeochemical Pathways and Cycles
Ecological Models
Human Impact/ Climate Change/ Conservation