Korenblum’s Principle for Bergman Spaces with Radial Weights

Pub Date : 2024-05-18 DOI:10.1007/s40315-024-00543-6
Iason Efraimidis, Adrián Llinares, Dragan Vukotić
{"title":"Korenblum’s Principle for Bergman Spaces with Radial Weights","authors":"Iason Efraimidis, Adrián Llinares, Dragan Vukotić","doi":"10.1007/s40315-024-00543-6","DOIUrl":null,"url":null,"abstract":"<p>We show that the Korenblum maximum (domination) principle is valid for weighted Bergman spaces <span>\\(A^p_w\\)</span> with arbitrary (non-negative and integrable) radial weights <i>w</i> in the case <span>\\(1\\le p&lt;\\infty \\)</span>. We also notice that in every weighted Bergman space the supremum of all radii for which the principle holds is strictly smaller than one. Under the mild additional assumption <span>\\(\\liminf _{r\\rightarrow 0^+} w(r)&gt;0\\)</span>, we show that the principle fails whenever <span>\\(0&lt;p&lt;1\\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40315-024-00543-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We show that the Korenblum maximum (domination) principle is valid for weighted Bergman spaces \(A^p_w\) with arbitrary (non-negative and integrable) radial weights w in the case \(1\le p<\infty \). We also notice that in every weighted Bergman space the supremum of all radii for which the principle holds is strictly smaller than one. Under the mild additional assumption \(\liminf _{r\rightarrow 0^+} w(r)>0\), we show that the principle fails whenever \(0<p<1\).

分享
查看原文
有径向权重的伯格曼空间的科伦布伦原理
我们证明,在 \(1\le p<\infty \)情况下,Korenblum 最大(支配)原则对于具有任意(非负且可整)径向权重 w 的加权伯格曼空间 \(A^p_w\)是有效的。我们还注意到,在每一个加权伯格曼空间中,该原则成立的所有半径的上集都严格小于1。在温和的附加假设((liminf _{r\rightarrow 0^+} w(r)>0\))下,我们证明只要\(0<p<1\),原则就失效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信