Sebastian Weiss, Bodo Mickan, Jiri Polansky, Kilian Oberleithner, Markus Bär, Sonja Schmelter
{"title":"Improved Prediction of the Flow in Cylindrical Critical Flow Venturi Nozzles Using a Transitional Model","authors":"Sebastian Weiss, Bodo Mickan, Jiri Polansky, Kilian Oberleithner, Markus Bär, Sonja Schmelter","doi":"10.1007/s10494-024-00553-3","DOIUrl":null,"url":null,"abstract":"<div><p>Critical flow Venturi nozzles (CFVNs) are a state-of-the-art secondary standard widely used for gas flow measurements with high precision. The flow rate correlates with the type and thickness of the boundary layer (BL) inside the nozzle throat. In the cylindrical type—one of the two standard designs of CFVNs—the nozzle throat encompasses a defined axial length in which the BL develops. This numerical study is concerned with the BL effects in a cylindrical CFVN by means of two turbulence models. Compared to experimental data, the <i>k</i>-<span>\\(\\omega\\)</span> SST model predicts the discharge coefficient well for high and low Reynolds numbers, but not in the intermediate regime. The <span>\\(\\gamma\\)</span>-<span>\\(Re_{\\theta }\\)</span> model, on the contrary, agrees well with experimental data in the entire flow range. Relevant quantities and profiles of the BL are separately investigated in the laminar, turbulent, and transitional region. The calculated laminar and turbulent BL thicknesses correspond to predictions based on integral methods for solving the BL equations. Simple representations are proposed for the Zagarola-Smits scaled laminar and turbulent deficit BL profiles removing the effects of axial position, Reynolds number, and pressure gradient. Furthermore, the shape factor is investigated as a characteristic parameter for determining the transitional region.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"113 2","pages":"363 - 389"},"PeriodicalIF":2.0000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10494-024-00553-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-024-00553-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Critical flow Venturi nozzles (CFVNs) are a state-of-the-art secondary standard widely used for gas flow measurements with high precision. The flow rate correlates with the type and thickness of the boundary layer (BL) inside the nozzle throat. In the cylindrical type—one of the two standard designs of CFVNs—the nozzle throat encompasses a defined axial length in which the BL develops. This numerical study is concerned with the BL effects in a cylindrical CFVN by means of two turbulence models. Compared to experimental data, the k-\(\omega\) SST model predicts the discharge coefficient well for high and low Reynolds numbers, but not in the intermediate regime. The \(\gamma\)-\(Re_{\theta }\) model, on the contrary, agrees well with experimental data in the entire flow range. Relevant quantities and profiles of the BL are separately investigated in the laminar, turbulent, and transitional region. The calculated laminar and turbulent BL thicknesses correspond to predictions based on integral methods for solving the BL equations. Simple representations are proposed for the Zagarola-Smits scaled laminar and turbulent deficit BL profiles removing the effects of axial position, Reynolds number, and pressure gradient. Furthermore, the shape factor is investigated as a characteristic parameter for determining the transitional region.
期刊介绍:
Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles.
Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.