The Rhodes semilattice of a biased graph

IF 0.9 3区 数学 Q2 MATHEMATICS
Michael J. Gottstein, Thomas Zaslavsky
{"title":"The Rhodes semilattice of a biased graph","authors":"Michael J. Gottstein,&nbsp;Thomas Zaslavsky","doi":"10.1007/s00010-024-01039-3","DOIUrl":null,"url":null,"abstract":"<div><p>We reinterpret the Rhodes semilattices <span>\\(R_n({\\mathfrak {G}})\\)</span> of a group <span>\\({\\mathfrak {G}}\\)</span> in terms of gain graphs and generalize them to all gain graphs, both as sets of partition-potential pairs and as sets of subgraphs, and for the latter, further to biased graphs. Based on this we propose four different natural lattices in which the Rhodes semilattices and its generalizations are order ideals.\n</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"98 6","pages":"1677 - 1687"},"PeriodicalIF":0.9000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-024-01039-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We reinterpret the Rhodes semilattices \(R_n({\mathfrak {G}})\) of a group \({\mathfrak {G}}\) in terms of gain graphs and generalize them to all gain graphs, both as sets of partition-potential pairs and as sets of subgraphs, and for the latter, further to biased graphs. Based on this we propose four different natural lattices in which the Rhodes semilattices and its generalizations are order ideals.

偏置图的罗得半网格
我们从增益图的角度重新解释了组\({\mathfrak {G}})的罗兹半格(R_n({\mathfrak {G}})),并将其推广到所有增益图,既包括分区-势对的集合,也包括子图的集合,对于后者,还进一步推广到偏置图。在此基础上,我们提出了四种不同的自然网格,其中罗兹半网格及其广义是阶理想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信