$Γ(X)$ as Polish Space

Edwar Alexis Ramírez Ardila
{"title":"$Γ(X)$ as Polish Space","authors":"Edwar Alexis Ramírez Ardila","doi":"arxiv-2405.09437","DOIUrl":null,"url":null,"abstract":"We will see how to define the metric $\\beta$, which turns the topological\nspace of continuous functions whose domains are open subsets of a locally\ncompact and second countable space $X$ to values in a polish space $Y$, called\n$(C_{od}(X,Y),\\tau_{\\iota,D})$ into a polish space.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.09437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We will see how to define the metric $\beta$, which turns the topological space of continuous functions whose domains are open subsets of a locally compact and second countable space $X$ to values in a polish space $Y$, called $(C_{od}(X,Y),\tau_{\iota,D})$ into a polish space.
$Γ(X)$为波兰空间
我们将看到如何定义度量$\beta$,它将域为局部紧凑的第二可数空间$X$的开子集的连续函数的拓扑空间转化为抛光空间$Y$中的值,称为$(C_{od}(X,Y),\tau_{\iota,D})$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信