Quantum Dichotomies and Coherent Thermodynamics beyond First-Order Asymptotics

Patryk Lipka-Bartosik, Christopher T. Chubb, Joseph M. Renes, Marco Tomamichel, Kamil Korzekwa
{"title":"Quantum Dichotomies and Coherent Thermodynamics beyond First-Order Asymptotics","authors":"Patryk Lipka-Bartosik, Christopher T. Chubb, Joseph M. Renes, Marco Tomamichel, Kamil Korzekwa","doi":"10.1103/prxquantum.5.020335","DOIUrl":null,"url":null,"abstract":"We address the problem of exact and approximate transformation of quantum dichotomies in the asymptotic regime, i.e., the existence of a quantum channel <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mi mathvariant=\"script\">E</mi></mrow></mrow></math> mapping <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi>ρ</mi><mn>1</mn><mrow><mo>⊗</mo><mi>n</mi></mrow></msubsup></math> into <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi>ρ</mi><mn>2</mn><mrow><mo>⊗</mo><msub><mi>R</mi><mi>n</mi></msub><mi>n</mi></mrow></msubsup></math> with an error <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>ϵ</mi><mi>n</mi></msub></math> (measured by trace distance) and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi>σ</mi><mn>1</mn><mrow><mo>⊗</mo><mi>n</mi></mrow></msubsup></math> into <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi>σ</mi><mn>2</mn><mrow><mo>⊗</mo><msub><mi>R</mi><mi>n</mi></msub><mi>n</mi></mrow></msubsup></math> exactly, for a large number <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi></math>. We derive second-order asymptotic expressions for the optimal transformation rate <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>R</mi><mi>n</mi></msub></math> in the small-, moderate-, and large-deviation error regimes, as well as the zero-error regime, for an arbitrary pair <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><msub><mi>ρ</mi><mn>1</mn></msub><mo>,</mo><msub><mi>σ</mi><mn>1</mn></msub><mo stretchy=\"false\">)</mo></math> of initial states and a commuting pair <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><msub><mi>ρ</mi><mn>2</mn></msub><mo>,</mo><msub><mi>σ</mi><mn>2</mn></msub><mo stretchy=\"false\">)</mo></math> of final states. We also prove that for <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>σ</mi><mn>1</mn></msub></math> and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>σ</mi><mn>2</mn></msub></math> given by thermal Gibbs states, the derived optimal transformation rates in the first three regimes can be attained by thermal operations. This allows us, for the first time, to study the second-order asymptotics of thermodynamic state interconversion with fully general initial states that may have coherence between different energy eigenspaces. Thus, we discuss the optimal performance of thermodynamic protocols with coherent inputs and describe three novel resonance phenomena allowing one to significantly reduce transformation errors induced by finite-size effects. What is more, our result on quantum dichotomies can also be used to obtain, up to second-order asymptotic terms, optimal conversion rates between pure bipartite entangled states under local operations and classical communication.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.020335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We address the problem of exact and approximate transformation of quantum dichotomies in the asymptotic regime, i.e., the existence of a quantum channel E mapping ρ1n into ρ2Rnn with an error ϵn (measured by trace distance) and σ1n into σ2Rnn exactly, for a large number n. We derive second-order asymptotic expressions for the optimal transformation rate Rn in the small-, moderate-, and large-deviation error regimes, as well as the zero-error regime, for an arbitrary pair (ρ1,σ1) of initial states and a commuting pair (ρ2,σ2) of final states. We also prove that for σ1 and σ2 given by thermal Gibbs states, the derived optimal transformation rates in the first three regimes can be attained by thermal operations. This allows us, for the first time, to study the second-order asymptotics of thermodynamic state interconversion with fully general initial states that may have coherence between different energy eigenspaces. Thus, we discuss the optimal performance of thermodynamic protocols with coherent inputs and describe three novel resonance phenomena allowing one to significantly reduce transformation errors induced by finite-size effects. What is more, our result on quantum dichotomies can also be used to obtain, up to second-order asymptotic terms, optimal conversion rates between pure bipartite entangled states under local operations and classical communication.

Abstract Image

超越一阶渐近的量子二分法和相干热力学
我们要解决量子二分法在渐近机制下的精确和近似转换问题,即存在一个量子通道 E,它能将 ρ1⊗n 映射到 ρ2⊗Rnn,且误差为 ϵn(用痕量距离测量),并能将 σ1⊗n 精确地映射到 σ2⊗Rnn。对于任意一对初始状态 (ρ1,σ1)和一对最终状态 (ρ2,σ2),我们推导出小偏差、中偏差和大偏差误差机制以及零误差机制下最佳转换率 Rn 的二阶渐近表达式。我们还证明,对于热吉布斯态给出的 σ1 和 σ2,通过热操作可以获得前三种状态下的最优转化率。这让我们第一次研究了热力学状态相互转换的二阶渐近学,其初始状态完全一般,可能在不同能量特征空间之间具有一致性。因此,我们讨论了具有相干输入的热力学协议的最佳性能,并描述了三种新的共振现象,使人们能够显著减少由有限尺寸效应引起的转换误差。更重要的是,我们关于量子二分法的结果还可用于获得在局部操作和经典通信条件下纯二分纠缠态之间的最佳转换率,直至二阶渐近项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信