Fractional-order rat bite fever model: a mathematical investigation into the transmission dynamics

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Sagar R. Khirsariya, Mahesh A. Yeolekar, Bijal M. Yeolekar, Jigensh P. Chauhan
{"title":"Fractional-order rat bite fever model: a mathematical investigation into the transmission dynamics","authors":"Sagar R. Khirsariya, Mahesh A. Yeolekar, Bijal M. Yeolekar, Jigensh P. Chauhan","doi":"10.1007/s12190-024-02116-1","DOIUrl":null,"url":null,"abstract":"<p>The fractional ordered mathematical model offers more insights compared to integer order models. In this work, we analyzed fractional order rat bite fever model. We employ the Adams–Bashforth–Moulton method in conjunction with fractional-order derivatives in the Caputo sense to study the model. The work demonstrates how fractional derivative models offer an increased degree of flexibility to investigate memory effects and illness dynamics for a particular data set. Further, an analysis of the aforementioned model including its existence, uniqueness, and stability is considered. The distinct parameter estimation for every value of the fractional order highlights the importance of this work.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12190-024-02116-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The fractional ordered mathematical model offers more insights compared to integer order models. In this work, we analyzed fractional order rat bite fever model. We employ the Adams–Bashforth–Moulton method in conjunction with fractional-order derivatives in the Caputo sense to study the model. The work demonstrates how fractional derivative models offer an increased degree of flexibility to investigate memory effects and illness dynamics for a particular data set. Further, an analysis of the aforementioned model including its existence, uniqueness, and stability is considered. The distinct parameter estimation for every value of the fractional order highlights the importance of this work.

Abstract Image

分数阶大鼠咬伤热模型:传播动力学数学研究
与整数阶模型相比,分数阶数学模型提供了更多的启示。在这项工作中,我们分析了分数阶鼠咬热模型。我们采用 Adams-Bashforth-Moulton 方法结合 Caputo 意义上的分数阶导数来研究该模型。这项工作展示了分数导数模型如何为研究特定数据集的记忆效应和疾病动力学提供了更大程度的灵活性。此外,还考虑了对上述模型的分析,包括其存在性、唯一性和稳定性。对每一个分数阶值进行不同的参数估计凸显了这项工作的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信