{"title":"Improving Sliding Window Effect of LSTM in Stock Prediction Based on Econometrics Theory","authors":"Xiaoxiao Liu, Wei Wang","doi":"10.1007/s10614-024-10627-z","DOIUrl":null,"url":null,"abstract":"<p>This study examines the influence of the sliding window in the LSTM model on its predictive performance in the stock market. The investigation encompasses three aspects: the impact of the stationarity of the original data, the effect of the time interval, and the influence of the input order of data. Additionally, a standard VAR model is established for a comparative benchmark. The experimental dataset comprises the daily stock index prices of the six major stock markets from the January 2010 to December 2019. The experimental results demonstrate that stationary input data enhances the predictive performance of the LSTM model. Furthermore, shorter time interval tends to yield improved outcomes, while the order of input data does not impact the performance of the LSTM. Although the predictive capability of the LSTM model may not consistently surpass that of the standard VAR model, which is different from the previous research, it serves to compensate for the conditional limitations associated with VAR model construction.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"67 1","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s10614-024-10627-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study examines the influence of the sliding window in the LSTM model on its predictive performance in the stock market. The investigation encompasses three aspects: the impact of the stationarity of the original data, the effect of the time interval, and the influence of the input order of data. Additionally, a standard VAR model is established for a comparative benchmark. The experimental dataset comprises the daily stock index prices of the six major stock markets from the January 2010 to December 2019. The experimental results demonstrate that stationary input data enhances the predictive performance of the LSTM model. Furthermore, shorter time interval tends to yield improved outcomes, while the order of input data does not impact the performance of the LSTM. Although the predictive capability of the LSTM model may not consistently surpass that of the standard VAR model, which is different from the previous research, it serves to compensate for the conditional limitations associated with VAR model construction.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.