Chow–Lefschetz motives

Bruno Kahn
{"title":"Chow–Lefschetz motives","authors":"Bruno Kahn","doi":"10.1016/j.indag.2024.04.007","DOIUrl":null,"url":null,"abstract":"We develop Milne’s theory of Lefschetz motives for general adequate equivalence relations and over a not necessarily algebraically closed base field. The corresponding categories turn out to enjoy all properties predicted by standard and less standard conjectures, in a stronger way: algebraic and numerical equivalences agree in this context. We also compute the Tannakian group associated to a Weil cohomology in a different and more conceptual way than Milne’s case-by-case approach.","PeriodicalId":501252,"journal":{"name":"Indagationes Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.indag.2024.04.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We develop Milne’s theory of Lefschetz motives for general adequate equivalence relations and over a not necessarily algebraically closed base field. The corresponding categories turn out to enjoy all properties predicted by standard and less standard conjectures, in a stronger way: algebraic and numerical equivalences agree in this context. We also compute the Tannakian group associated to a Weil cohomology in a different and more conceptual way than Milne’s case-by-case approach.
周-莱夫谢茨动机
我们发展了米尔恩关于一般充分等价关系和不一定代数闭合基域的列夫谢茨动机理论。结果证明,相应的范畴享有标准猜想和非标准猜想所预言的所有性质,而且以更强的方式:代数等价和数字等价在这种情况下是一致的。我们还以一种不同于米尔恩的逐个方法、更概念化的方式计算了与魏尔同调相关的坦纳基群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信