A Variational Perspective on Auxetic Metamaterials of Checkerboard-Type

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Wolf-Patrick Düll, Dominik Engl, Carolin Kreisbeck
{"title":"A Variational Perspective on Auxetic Metamaterials of Checkerboard-Type","authors":"Wolf-Patrick Düll,&nbsp;Dominik Engl,&nbsp;Carolin Kreisbeck","doi":"10.1007/s00205-024-01989-7","DOIUrl":null,"url":null,"abstract":"<div><p>The main result of this work is a homogenization theorem via variational convergence for elastic materials with stiff checkerboard-type heterogeneities under the assumptions of physical growth and non-self-interpenetration. While the obtained energy estimates are rather standard, determining the effective deformation behavior, or in other words, characterizing the weak Sobolev limits of deformation maps whose gradients are locally close to rotations on the stiff components, is the challenging part. To this end, we establish an asymptotic rigidity result, showing that, under suitable scaling assumptions, the attainable macroscopic deformations are affine conformal contractions. This identifies the composite as a mechanical metamaterial with a negative Poisson’s ratio. Our proof strategy is to tackle first an idealized model with full rigidity on the stiff tiles to acquire insight into the mechanics of the model and then transfer the findings and methodology to the model with diverging elastic constants. The latter requires, in particular, a new quantitative geometric rigidity estimate for non-connected squares touching each other at their vertices and a tailored Poincaré type inequality for checkerboard structures.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-024-01989-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-01989-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The main result of this work is a homogenization theorem via variational convergence for elastic materials with stiff checkerboard-type heterogeneities under the assumptions of physical growth and non-self-interpenetration. While the obtained energy estimates are rather standard, determining the effective deformation behavior, or in other words, characterizing the weak Sobolev limits of deformation maps whose gradients are locally close to rotations on the stiff components, is the challenging part. To this end, we establish an asymptotic rigidity result, showing that, under suitable scaling assumptions, the attainable macroscopic deformations are affine conformal contractions. This identifies the composite as a mechanical metamaterial with a negative Poisson’s ratio. Our proof strategy is to tackle first an idealized model with full rigidity on the stiff tiles to acquire insight into the mechanics of the model and then transfer the findings and methodology to the model with diverging elastic constants. The latter requires, in particular, a new quantitative geometric rigidity estimate for non-connected squares touching each other at their vertices and a tailored Poincaré type inequality for checkerboard structures.

Abstract Image

棋盘式超材料的变量视角
这项工作的主要成果是在物理增长和非自穿透的假设条件下,通过变分收敛为具有刚性棋盘式异质的弹性材料提供了均质化定理。虽然所获得的能量估计值相当标准,但确定有效变形行为,或者换句话说,表征梯度局部接近于刚性成分旋转的变形图的弱 Sobolev 极限,则是具有挑战性的部分。为此,我们建立了一个渐近刚度结果,表明在合适的缩放假设下,可实现的宏观变形是仿射共形收缩。这就确定了复合材料是一种具有负泊松比的机械超材料。我们的证明策略是,首先处理一个在刚性瓦上具有完全刚性的理想化模型,以深入了解该模型的力学原理,然后将研究结果和方法转移到具有发散弹性常数的模型上。后者尤其需要对顶点相互接触的非连接正方形进行新的定量几何刚度估计,以及对棋盘式结构进行量身定制的波恩卡莱式不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信