Asymptotic Stability of Couette Flow in a Strong Uniform Magnetic Field for the Euler-MHD System

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Weiren Zhao, Ruizhao Zi
{"title":"Asymptotic Stability of Couette Flow in a Strong Uniform Magnetic Field for the Euler-MHD System","authors":"Weiren Zhao,&nbsp;Ruizhao Zi","doi":"10.1007/s00205-024-01996-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we prove the asymptotic stability of Couette flow in a strong uniform magnetic field for the Euler-MHD system, when the perturbations are in Gevrey-<span>\\(\\frac{1}{s}\\)</span>, <span>\\((\\frac{1}{2}&lt;s\\leqq 1)\\)</span> and of size smaller than the resistivity coefficient <span>\\(\\mu \\)</span>. More precisely, we prove that </p><ol>\n <li>\n <span>(1)</span>\n \n <p>the <span>\\(\\mu ^{-\\frac{1}{3}}\\)</span>-amplification of the perturbed vorticity, namely, the size of the vorticity grows from <span>\\(\\Vert \\omega _{\\textrm{in}}\\Vert _{\\mathcal {G}^{\\lambda _{0}}}\\lesssim \\mu \\)</span> to <span>\\(\\Vert \\omega _{\\infty }\\Vert _{\\mathcal {G}^{\\lambda '}}\\lesssim \\mu ^{\\frac{2}{3}}\\)</span>;</p>\n \n </li>\n <li>\n <span>(2)</span>\n \n <p>the polynomial decay of the perturbed current density, namely, <span>\\(\\left\\| j_{\\ne }\\right\\| _{L^2}\\lesssim \\frac{c_0 }{\\langle t\\rangle ^2 }\\min \\left\\{ \\mu ^{-\\frac{1}{3}},\\langle t \\rangle \\right\\} \\)</span>;</p>\n \n </li>\n <li>\n <span>(3)</span>\n \n <p>and the damping for the perturbed velocity and magnetic field, namely, </p><div><div><span>$$\\begin{aligned} \\left\\| (u^1_{\\ne },b^1_{\\ne })\\right\\| _{L^2}\\lesssim \\frac{c_0\\mu }{\\langle t\\rangle }\\min \\left\\{ \\mu ^{-\\frac{1}{3}},\\langle t \\rangle \\right\\} , \\quad \\left\\| (u^2,b^2)\\right\\| _{L^2}\\lesssim \\frac{c_0\\mu }{\\langle t\\rangle ^2 }\\min \\left\\{ \\mu ^{-\\frac{1}{3}},\\langle t \\rangle \\right\\} . \\end{aligned}$$</span></div></div>\n \n </li>\n </ol><p> We also confirm that the strong uniform magnetic field stabilizes the Euler-MHD system near Couette flow.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-01996-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove the asymptotic stability of Couette flow in a strong uniform magnetic field for the Euler-MHD system, when the perturbations are in Gevrey-\(\frac{1}{s}\), \((\frac{1}{2}<s\leqq 1)\) and of size smaller than the resistivity coefficient \(\mu \). More precisely, we prove that

  1. (1)

    the \(\mu ^{-\frac{1}{3}}\)-amplification of the perturbed vorticity, namely, the size of the vorticity grows from \(\Vert \omega _{\textrm{in}}\Vert _{\mathcal {G}^{\lambda _{0}}}\lesssim \mu \) to \(\Vert \omega _{\infty }\Vert _{\mathcal {G}^{\lambda '}}\lesssim \mu ^{\frac{2}{3}}\);

  2. (2)

    the polynomial decay of the perturbed current density, namely, \(\left\| j_{\ne }\right\| _{L^2}\lesssim \frac{c_0 }{\langle t\rangle ^2 }\min \left\{ \mu ^{-\frac{1}{3}},\langle t \rangle \right\} \);

  3. (3)

    and the damping for the perturbed velocity and magnetic field, namely,

    $$\begin{aligned} \left\| (u^1_{\ne },b^1_{\ne })\right\| _{L^2}\lesssim \frac{c_0\mu }{\langle t\rangle }\min \left\{ \mu ^{-\frac{1}{3}},\langle t \rangle \right\} , \quad \left\| (u^2,b^2)\right\| _{L^2}\lesssim \frac{c_0\mu }{\langle t\rangle ^2 }\min \left\{ \mu ^{-\frac{1}{3}},\langle t \rangle \right\} . \end{aligned}$$

We also confirm that the strong uniform magnetic field stabilizes the Euler-MHD system near Couette flow.

欧拉-MHD 系统在强均匀磁场中耦合流的渐近稳定性
在本文中,我们证明了欧拉-MHD系统在强均匀磁场中Couette流的渐近稳定性,当扰动在Gevrey-(\frac{1}{s}\)、\((\frac{1}{2}<s\leqq 1)\)并且大小小于电阻率系数\(\mu \)时。更准确地说,我们证明了:(1)扰动涡度的(\mu ^{-\frac{1}{3}}\)放大,即、涡度的大小从(\Vert \omega _{textrm{in}}\Vert _{\mathcal {G}^{\lambda _{0}}}lesssim \mu \)增长到(\Vert \omega _{infty }\Vert _{\mathcal {G}^{\lambda '}}lesssim \mu ^{\frac{2}{3}}\);(2)the polynomial decay of the perturbed current density, namely, \(\left\| j_{\ne }\right| _{L^2}\lesssim \frac{c_0 }{\langle t\rangle ^2 }\min \left\{ \mu ^{-\frac{1}{3}}, \langle t\rangle \right\});(3)and the polynomial decay of the perturbed current density, namely, \(\left\| j_{\ne }\right| _{L^2}\lesssim \frac{c_0 }{\langle t\rangle ^2 }\min\);(3)扰动速度和磁场的阻尼,即 $$\begin{aligned}\(u^1_{\ne },b^1_{\ne })\right} _{L^2}\lesssim \frac{c_0\mu }\{langle t\rangle }\min \left\{ \mu ^{-\frac{1}{3}},\langle t\rangle \right\}, quad \left\| (u^2,b^2)\right\| _{L^2}\lesssim \frac{c_0\mu }{langle t\rangle ^2 }\min \left\{ \mu ^{-\frac{1}{3}},\langle t\rangle \right\} .\end{aligned}$$ 我们还证实了强均匀磁场能使欧拉-MHD 系统在库特流附近保持稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信