Can machine learning unlock new insights into high-frequency trading?

G. Ibikunle, B. Moews, K. Rzayev
{"title":"Can machine learning unlock new insights into high-frequency trading?","authors":"G. Ibikunle, B. Moews, K. Rzayev","doi":"arxiv-2405.08101","DOIUrl":null,"url":null,"abstract":"We design and train machine learning models to capture the nonlinear\ninteractions between financial market dynamics and high-frequency trading (HFT)\nactivity. In doing so, we introduce new metrics to identify liquidity-demanding\nand -supplying HFT strategies. Both types of HFT strategies increase activity\nin response to information events and decrease it when trading speed is\nrestricted, with liquidity-supplying strategies demonstrating greater\nresponsiveness. Liquidity-demanding HFT is positively linked with latency\narbitrage opportunities, whereas liquidity-supplying HFT is negatively related,\naligning with theoretical expectations. Our metrics have implications for\nunderstanding the information production process in financial markets.","PeriodicalId":501294,"journal":{"name":"arXiv - QuantFin - Computational Finance","volume":"1198 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.08101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We design and train machine learning models to capture the nonlinear interactions between financial market dynamics and high-frequency trading (HFT) activity. In doing so, we introduce new metrics to identify liquidity-demanding and -supplying HFT strategies. Both types of HFT strategies increase activity in response to information events and decrease it when trading speed is restricted, with liquidity-supplying strategies demonstrating greater responsiveness. Liquidity-demanding HFT is positively linked with latency arbitrage opportunities, whereas liquidity-supplying HFT is negatively related, aligning with theoretical expectations. Our metrics have implications for understanding the information production process in financial markets.
机器学习能否开启高频交易的新视角?
我们设计并训练机器学习模型,以捕捉金融市场动态与高频交易(HFT)活动之间的非线性互动。在此过程中,我们引入了新的指标来识别流动性需求型和供应型 HFT 策略。两种类型的 HFT 策略都会在信息事件发生时增加活动,而在交易速度受限时减少活动,其中流动性供应型策略表现出更强的反应能力。流动性需求型 HFT 与延迟套利机会呈正相关,而流动性供应型 HFT 则呈负相关,这与理论预期一致。我们的度量指标对理解金融市场的信息生产过程具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信