Equivariant Cohomology and Conditional Oriented Matroids

Pub Date : 2024-05-14 DOI:10.1093/imrn/rnad025
Galen Dorpalen-Barry, Nicholas Proudfoot, Jidong Wang
{"title":"Equivariant Cohomology and Conditional Oriented Matroids","authors":"Galen Dorpalen-Barry, Nicholas Proudfoot, Jidong Wang","doi":"10.1093/imrn/rnad025","DOIUrl":null,"url":null,"abstract":"We give a cohomological interpretation of the Heaviside filtration on the Varchenko–Gelfand ring of a pair $({\\mathcal{A}},{\\mathcal{K}})$, where ${\\mathcal{A}}$ is a real hyperplane arrangement and ${\\mathcal{K}}$ is a convex open subset of the ambient vector space. This builds on work of the first author, who studied the filtration from a purely algebraic perspective, as well as work of Moseley, who gave a cohomological interpretation in the special case where ${\\mathcal{K}}$ is the ambient vector space. We also define the Gelfand–Rybnikov ring of a conditional oriented matroid, which simultaneously generalizes the Gelfand–Rybnikov ring of an oriented matroid and the aforementioned Varchenko–Gelfand ring of a pair. We give purely combinatorial presentations of the ring, its associated graded, and its Rees algebra.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnad025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We give a cohomological interpretation of the Heaviside filtration on the Varchenko–Gelfand ring of a pair $({\mathcal{A}},{\mathcal{K}})$, where ${\mathcal{A}}$ is a real hyperplane arrangement and ${\mathcal{K}}$ is a convex open subset of the ambient vector space. This builds on work of the first author, who studied the filtration from a purely algebraic perspective, as well as work of Moseley, who gave a cohomological interpretation in the special case where ${\mathcal{K}}$ is the ambient vector space. We also define the Gelfand–Rybnikov ring of a conditional oriented matroid, which simultaneously generalizes the Gelfand–Rybnikov ring of an oriented matroid and the aforementioned Varchenko–Gelfand ring of a pair. We give purely combinatorial presentations of the ring, its associated graded, and its Rees algebra.
分享
查看原文
等价同调与条件定向矩阵
我们给出了一对$({\mathcal{A}},{\mathcal{K}})$的瓦尔琴科-格尔芬德环上的海维塞德过滤的同调解释,其中${\mathcal{A}}$是实超平面排列,${\mathcal{K}}$是环境向量空间的凸开放子集。第一作者从纯代数的角度研究了滤波,莫斯利在环境向量空间为 ${mathcal{K}}$ 的特殊情况下给出了同调解释。我们还定义了条件定向矩阵的格尔芬-雷布尼科夫环,它同时概括了定向矩阵的格尔芬-雷布尼科夫环和前面提到的一对的瓦尔琴科-格尔芬环。我们给出了该环、其相关梯度及其里斯代数的纯组合表述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信