Zhe Chen, Wen Yan, Ying Liu, Guang-qiang Li, Shao-song Hong, Nan Li
{"title":"Purification performance on molten steel of novel Al2O3-based ceramic filter prepared from microporous powder and nano-Al2O3 powder","authors":"Zhe Chen, Wen Yan, Ying Liu, Guang-qiang Li, Shao-song Hong, Nan Li","doi":"10.1007/s42243-024-01230-5","DOIUrl":null,"url":null,"abstract":"<p>Reticulated ceramic foam filters provide an effective way to purify molten steel by removing non-metallic inclusions. We proposed a novel strategy to improve the purification performance of Al<sub>2</sub>O<sub>3</sub>-based ceramic filters by using microporous corundum–spinel raw materials to replace dense raw materials. Three kinds of Al<sub>2</sub>O<sub>3</sub>-based ceramic filters fabricated from dense α-Al<sub>2</sub>O<sub>3</sub> micro-powder or microporous corundum–spinel powder were selected to carry out the immersion tests with molten steel. On the one hand, the higher surface roughness of the filter skeleton prepared from microporous raw materials increased the adsorption capacity of skeleton surface on inclusions in molten steel. On the other hand, the higher apparent porosity and larger pore size of the filter skeleton were more beneficial to the penetration of molten steel in the micropores of skeleton. The reaction process at the solid–liquid interface also improved the wettability of the interface between skeleton and molten steel, resulting in a larger penetration depth and a better adsorption effect on the inclusions. In summary, the novel Al<sub>2</sub>O<sub>3</sub>-based ceramic filter prepared with microporous corundum–spinel powder and addition of 5 wt.% nano-Al<sub>2</sub>O<sub>3</sub> powder reduced the total oxygen content of the steel from 40.2 × 10<sup>−4</sup> to 12.7 × 10<sup>−4</sup> wt.% by 68.4% and the Al content from 0.46 to 0.18 wt.% by 60.9% after immersion test, presenting the most excellent purification performance on molten steel.</p>","PeriodicalId":16151,"journal":{"name":"Journal of Iron and Steel Research International","volume":"70 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Iron and Steel Research International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42243-024-01230-5","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Reticulated ceramic foam filters provide an effective way to purify molten steel by removing non-metallic inclusions. We proposed a novel strategy to improve the purification performance of Al2O3-based ceramic filters by using microporous corundum–spinel raw materials to replace dense raw materials. Three kinds of Al2O3-based ceramic filters fabricated from dense α-Al2O3 micro-powder or microporous corundum–spinel powder were selected to carry out the immersion tests with molten steel. On the one hand, the higher surface roughness of the filter skeleton prepared from microporous raw materials increased the adsorption capacity of skeleton surface on inclusions in molten steel. On the other hand, the higher apparent porosity and larger pore size of the filter skeleton were more beneficial to the penetration of molten steel in the micropores of skeleton. The reaction process at the solid–liquid interface also improved the wettability of the interface between skeleton and molten steel, resulting in a larger penetration depth and a better adsorption effect on the inclusions. In summary, the novel Al2O3-based ceramic filter prepared with microporous corundum–spinel powder and addition of 5 wt.% nano-Al2O3 powder reduced the total oxygen content of the steel from 40.2 × 10−4 to 12.7 × 10−4 wt.% by 68.4% and the Al content from 0.46 to 0.18 wt.% by 60.9% after immersion test, presenting the most excellent purification performance on molten steel.
期刊介绍:
Publishes critically reviewed original research of archival significance
Covers hydrometallurgy, pyrometallurgy, electrometallurgy, transport phenomena, process control, physical chemistry, solidification, mechanical working, solid state reactions, materials processing, and more
Includes welding & joining, surface treatment, mathematical modeling, corrosion, wear and abrasion
Journal of Iron and Steel Research International publishes original papers and occasional invited reviews on aspects of research and technology in the process metallurgy and metallic materials. Coverage emphasizes the relationships among the processing, structure and properties of metals, including advanced steel materials, superalloy, intermetallics, metallic functional materials, powder metallurgy, structural titanium alloy, composite steel materials, high entropy alloy, amorphous alloys, metallic nanomaterials, etc..