The Wasserstein Distance for Ricci Shrinkers

IF 0.9 2区 数学 Q2 MATHEMATICS
Franciele Conrado, Detang Zhou
{"title":"The Wasserstein Distance for Ricci Shrinkers","authors":"Franciele Conrado, Detang Zhou","doi":"10.1093/imrn/rnae099","DOIUrl":null,"url":null,"abstract":"Let $(M^{n},g,f)$ be a Ricci shrinker such that $\\text{Ric}_{f}=\\frac{1}{2}g$ and the measure induced by the weighted volume element $(4\\pi )^{-\\frac{n}{2}}e^{-f}dv_{g}$ is a probability measure. Given a point $p\\in M$, we consider two probability measures defined in the tangent space $T_{p}M$, namely the Gaussian measure $\\gamma $ and the measure $\\overline{\\nu }$ induced by the exponential map of $M$ to $p$. In this paper, we prove a result that provides an upper estimate for the Wasserstein distance with respect to the Euclidean metric $g_{0}$ between the measures $\\overline{\\nu }$ and $\\gamma $, and which also elucidates the rigidity implications resulting from this estimate.","PeriodicalId":14461,"journal":{"name":"International Mathematics Research Notices","volume":"33 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematics Research Notices","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae099","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $(M^{n},g,f)$ be a Ricci shrinker such that $\text{Ric}_{f}=\frac{1}{2}g$ and the measure induced by the weighted volume element $(4\pi )^{-\frac{n}{2}}e^{-f}dv_{g}$ is a probability measure. Given a point $p\in M$, we consider two probability measures defined in the tangent space $T_{p}M$, namely the Gaussian measure $\gamma $ and the measure $\overline{\nu }$ induced by the exponential map of $M$ to $p$. In this paper, we prove a result that provides an upper estimate for the Wasserstein distance with respect to the Euclidean metric $g_{0}$ between the measures $\overline{\nu }$ and $\gamma $, and which also elucidates the rigidity implications resulting from this estimate.
利玛窦收缩器的瓦瑟斯坦距离
让 $(M^{n},g,f)$ 是一个里奇收缩器,使得 $\text{Ric}_{f}=\frac{1}{2}g$ 并且由加权体积元素 $(4\pi )^{-\frac{n}{2}}e^{-f}dv_{g}$ 引起的度量是一个概率度量。给定 M$ 中的一个点 $p/,我们考虑切空间 $T_{p}M$ 中定义的两个概率度量,即高斯度量 $\gamma $ 和由 $M$ 到 $p$ 的指数映射诱导的度量 $overline/{nu}$。在本文中,我们证明了一个结果,它提供了量 $\overline{\nu }$ 与 $\gamma $ 之间关于欧几里得度量 $g_{0}$ 的瓦瑟斯坦距离的上估计值,并阐明了该估计值所产生的刚度影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
316
审稿时长
1 months
期刊介绍: International Mathematics Research Notices provides very fast publication of research articles of high current interest in all areas of mathematics. All articles are fully refereed and are judged by their contribution to advancing the state of the science of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信