Random analytic functions with a prescribed growth rate in the unit disk

Xiang Fang, Pham Trong Tien
{"title":"Random analytic functions with a prescribed growth rate in the unit disk","authors":"Xiang Fang, Pham Trong Tien","doi":"10.4153/s0008414x24000403","DOIUrl":null,"url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240516082445098-0753:S0008414X24000403:S0008414X24000403_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {R}f$</span></span></img></span></span> be the randomization of an analytic function over the unit disk in the complex plane <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240516082445098-0753:S0008414X24000403:S0008414X24000403_eqnu1.png\"><span data-mathjax-type=\"texmath\"><span>$$ \\begin{align*}\\mathcal{R} f(z) =\\sum_{n=0}^\\infty a_n X_n z^n \\in H({\\mathbb D}), \\end{align*} $$</span></span></img></span>where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240516082445098-0753:S0008414X24000403:S0008414X24000403_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$f(z)=\\sum _{n=0}^\\infty a_n z^n \\in H({\\mathbb D})$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240516082445098-0753:S0008414X24000403:S0008414X24000403_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$(X_n)_{n \\geq 0}$</span></span></img></span></span> is a standard sequence of independent Bernoulli, Steinhaus, or complex Gaussian random variables. In this paper, we demonstrate that prescribing a polynomial growth rate for random analytic functions over the unit disk leads to rather satisfactory characterizations of those <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240516082445098-0753:S0008414X24000403:S0008414X24000403_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$f \\in H({\\mathbb D})$</span></span></img></span></span> such that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240516082445098-0753:S0008414X24000403:S0008414X24000403_inline5.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal R} f$</span></span></img></span></span> admits a given rate almost surely. In particular, we show that the growth rate of the random functions, the growth rate of their Taylor coefficients, and the asymptotic distribution of their zero sets can mutually, completely determine each other. Although the problem is purely complex analytic, the key strategy in the proofs is to introduce a class of auxiliary Banach spaces, which facilitate quantitative estimates.</p>","PeriodicalId":501820,"journal":{"name":"Canadian Journal of Mathematics","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x24000403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let Abstract Image$\mathcal {R}f$ be the randomization of an analytic function over the unit disk in the complex plane Abstract Image$$ \begin{align*}\mathcal{R} f(z) =\sum_{n=0}^\infty a_n X_n z^n \in H({\mathbb D}), \end{align*} $$where Abstract Image$f(z)=\sum _{n=0}^\infty a_n z^n \in H({\mathbb D})$ and Abstract Image$(X_n)_{n \geq 0}$ is a standard sequence of independent Bernoulli, Steinhaus, or complex Gaussian random variables. In this paper, we demonstrate that prescribing a polynomial growth rate for random analytic functions over the unit disk leads to rather satisfactory characterizations of those Abstract Image$f \in H({\mathbb D})$ such that Abstract Image${\mathcal R} f$ admits a given rate almost surely. In particular, we show that the growth rate of the random functions, the growth rate of their Taylor coefficients, and the asymptotic distribution of their zero sets can mutually, completely determine each other. Although the problem is purely complex analytic, the key strategy in the proofs is to introduce a class of auxiliary Banach spaces, which facilitate quantitative estimates.

单位盘中具有规定增长率的随机解析函数
让 $mathcal {R}f$ 成为复平面单位盘上解析函数的随机化 $$ \begin{align*}\mathcal{R} f(z) =\sum_{n=0}^\infty a_n X_n z^n \in H({\mathbb D}), \end{align*}其中 $f(z)=sum _{n=0}^\infty a_n z^n \in H({\mathbb D})$ 和 $(X_n)_{n \geq 0}$ 是独立伯努利、斯坦豪斯或复高斯随机变量的标准序列。在本文中,我们证明了为单位圆盘上的随机解析函数规定一个多项式增长率,可以相当令人满意地描述 H({\mathbb D})$中的 $f \,使得 ${mathcal R} f$ 几乎可以肯定地接受给定的增长率。特别是,我们证明了随机函数的增长率、其泰勒系数的增长率以及其零集的渐近分布可以相互完全决定。虽然问题纯粹是复杂解析的,但证明中的关键策略是引入一类辅助巴拿赫空间,这有助于定量估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信