Ursula U. Müller, Anton Schick, Wolfgang Wefelmeyer
{"title":"Estimation for Markov Chains with Periodically Missing Observations","authors":"Ursula U. Müller, Anton Schick, Wolfgang Wefelmeyer","doi":"10.1111/jtsa.12747","DOIUrl":null,"url":null,"abstract":"<p>When we observe a stationary time series with observations missing at periodic time points, we can still estimate its marginal distribution well, but the dependence structure of the time series may not be recoverable at all, or the usual estimators may have much larger variance than in the fully observed case. We show how non-parametric estimators can often be improved by adding unbiased estimators. We focus on a simple setting, first-order Markov chains on a finite state space, and an observation pattern in which a fixed number of consecutive observations is followed by an observation gap of fixed length, say workdays and weekends. The new estimators perform astonishingly well in some cases, as illustrated with simulations. The approach extends to continuous state space and to higher-order Markov chains.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jtsa.12747","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12747","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
When we observe a stationary time series with observations missing at periodic time points, we can still estimate its marginal distribution well, but the dependence structure of the time series may not be recoverable at all, or the usual estimators may have much larger variance than in the fully observed case. We show how non-parametric estimators can often be improved by adding unbiased estimators. We focus on a simple setting, first-order Markov chains on a finite state space, and an observation pattern in which a fixed number of consecutive observations is followed by an observation gap of fixed length, say workdays and weekends. The new estimators perform astonishingly well in some cases, as illustrated with simulations. The approach extends to continuous state space and to higher-order Markov chains.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.