On Lax representations under the gauge equivalence relation and Miura-type transformations for lattice equations

Sergei Igonin
{"title":"On Lax representations under the gauge equivalence relation and Miura-type transformations for lattice equations","authors":"Sergei Igonin","doi":"arxiv-2405.08579","DOIUrl":null,"url":null,"abstract":"We study matrix Lax representations (MLRs) for differential-difference\n(lattice) equations. For a given equation, two MLRs are said to be gauge\nequivalent if one of them can be obtained from the other by means of a matrix\ngauge transformation. We present results on the following questions: 1. When is a given MLR gauge equivalent to an MLR suitable for constructing\ndifferential-difference Miura-type transformations by the method of [G.\nBerkeley, S. Igonin, J. Phys. A (2016), arXiv:1512.09123]? 2. When is a given MLR gauge equivalent to a trivial MLR? Furthermore, we present new examples of integrable differential-difference\nequations with Miura-type transformations.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"253 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.08579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study matrix Lax representations (MLRs) for differential-difference (lattice) equations. For a given equation, two MLRs are said to be gauge equivalent if one of them can be obtained from the other by means of a matrix gauge transformation. We present results on the following questions: 1. When is a given MLR gauge equivalent to an MLR suitable for constructing differential-difference Miura-type transformations by the method of [G. Berkeley, S. Igonin, J. Phys. A (2016), arXiv:1512.09123]? 2. When is a given MLR gauge equivalent to a trivial MLR? Furthermore, we present new examples of integrable differential-difference equations with Miura-type transformations.
论格网方程的轨距等价关系下的拉克斯表征和米乌拉型变换
我们研究微分-差分(网格)方程的矩阵拉克斯表示(MLR)。对于一个给定方程,如果两个 MLR 中的一个可以通过矩阵量规变换从另一个得到,那么这两个 MLR 可以说是量规等价的。我们将介绍有关以下问题的结果:1.给定的 MLR 何时与适合通过[G.Berkeley, S. Igonin, J. Phys. A (2016), arXiv:1512.09123] 方法构造微分差分米乌拉型变换的 MLR 轨距等价?2.给定的 MLR 量规何时等价于微不足道的 MLR?此外,我们还提出了具有米乌拉型变换的可积分微分-差分方程的新例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信