{"title":"Evaluating the effect of ambient air temperature on the sustainability aspect of naphtha-based gas turbine power plant","authors":"Sankalp Arpit","doi":"10.1002/ep.14403","DOIUrl":null,"url":null,"abstract":"<p>The exergy-based sustainability indices have been a cause of concern for gas turbine power plant as its performance is very sensitive to air temperature. Hence, the present study evaluates the impact of atmospheric air temperature on exergy sustainability and ecological function of a naphtha-based gas turbine power plant using EES. The outcome of the study shows that combustion chamber (CC_1) needs more attention compared with other components present, and it has least improvement potential as compared with other components. Further while carrying out parametric analysis with respect to ambient air, it was observed that for a 1.1°C increase in atmospheric air temperature a reduction in sustainability index about 0.66% was observed respectively, for GT_1. Thus, this study established that the power plant's exergy sustainability performance has a negative impact at high ambient air temperatures on exergy sustainability indices.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ep.14403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The exergy-based sustainability indices have been a cause of concern for gas turbine power plant as its performance is very sensitive to air temperature. Hence, the present study evaluates the impact of atmospheric air temperature on exergy sustainability and ecological function of a naphtha-based gas turbine power plant using EES. The outcome of the study shows that combustion chamber (CC_1) needs more attention compared with other components present, and it has least improvement potential as compared with other components. Further while carrying out parametric analysis with respect to ambient air, it was observed that for a 1.1°C increase in atmospheric air temperature a reduction in sustainability index about 0.66% was observed respectively, for GT_1. Thus, this study established that the power plant's exergy sustainability performance has a negative impact at high ambient air temperatures on exergy sustainability indices.