(p, q)-Compactness in spaces of holomorphic mappings

IF 1 4区 数学 Q1 MATHEMATICS
Antonio Jiménez-Vargas, David Ruiz-Casternado
{"title":"(p, q)-Compactness in spaces of holomorphic mappings","authors":"Antonio Jiménez-Vargas, David Ruiz-Casternado","doi":"10.1515/math-2023-0183","DOIUrl":null,"url":null,"abstract":"Based on the concept of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0183_eq_001.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mi>q</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(p,q)</jats:tex-math> </jats:alternatives> </jats:inline-formula>-compact operator for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0183_eq_002.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>p</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi>∞</m:mi> </m:mrow> <m:mo>]</m:mo> </m:mrow> </m:math> <jats:tex-math>p\\in \\left[1,\\infty ]</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0183_eq_003.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>q</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:msup> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> </m:mrow> <m:mo>]</m:mo> </m:mrow> </m:math> <jats:tex-math>q\\in \\left[1,{p}^{* }]</jats:tex-math> </jats:alternatives> </jats:inline-formula>, we introduce and study the notion of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0183_eq_004.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mi>q</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(p,q)</jats:tex-math> </jats:alternatives> </jats:inline-formula>-compact holomorphic mapping between Banach spaces. We prove that the space formed by such mappings is a surjective <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0183_eq_005.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>p</m:mi> <m:mi>q</m:mi> <m:mo>∕</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>+</m:mo> <m:mi>q</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>pq/\\left(p+q)</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Banach bounded-holomorphic ideal that can be generated by composition with the ideal of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0183_eq_006.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mi>q</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(p,q)</jats:tex-math> </jats:alternatives> </jats:inline-formula>-compact operators. In addition, we study Mujica’s linearization of such mappings, its relation with the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0183_eq_007.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> <m:msup> <m:mrow> <m:mi>v</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> <m:mo>+</m:mo> <m:mi>t</m:mi> <m:msup> <m:mrow> <m:mi>v</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> <m:mo>+</m:mo> <m:mi>t</m:mi> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>∕</m:mo> <m:mi>t</m:mi> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> <m:msup> <m:mrow> <m:mi>v</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> </m:math> <jats:tex-math>\\left({u}^{* }{v}^{* }+t{v}^{* }+t{u}^{* })/t{u}^{* }{v}^{* }</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Banach bounded-holomorphic composition ideal of the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0183_eq_008.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> <m:mo>,</m:mo> <m:mi>u</m:mi> <m:mo>,</m:mo> <m:mi>v</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(t,u,v)</jats:tex-math> </jats:alternatives> </jats:inline-formula>-nuclear holomorphic mappings for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0183_eq_009.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>t</m:mi> <m:mo>,</m:mo> <m:mi>u</m:mi> <m:mo>,</m:mo> <m:mi>v</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi>∞</m:mi> </m:mrow> <m:mo>]</m:mo> </m:mrow> </m:math> <jats:tex-math>t,u,v\\in \\left[1,\\infty ]</jats:tex-math> </jats:alternatives> </jats:inline-formula>, its holomorphic transposition via the injective hull of the ideal of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0183_eq_010.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:msup> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> <m:mo>,</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(p,{q}^{* },1)</jats:tex-math> </jats:alternatives> </jats:inline-formula>-nuclear operators, the Möbius invariance of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0183_eq_011.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mi>q</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(p,q)</jats:tex-math> </jats:alternatives> </jats:inline-formula>-compact holomorphic mappings on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0183_eq_012.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"double-struck\">D</m:mi> </m:math> <jats:tex-math>{\\mathbb{D}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and its full compact factorization through a compact holomorphic mapping, a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0183_eq_013.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mi>q</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(p,q)</jats:tex-math> </jats:alternatives> </jats:inline-formula>-compact operator, and a compact operator.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"134 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2023-0183","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the concept of ( p , q ) \left(p,q) -compact operator for p [ 1 , ] p\in \left[1,\infty ] and q [ 1 , p * ] q\in \left[1,{p}^{* }] , we introduce and study the notion of ( p , q ) \left(p,q) -compact holomorphic mapping between Banach spaces. We prove that the space formed by such mappings is a surjective p q ( p + q ) pq/\left(p+q) -Banach bounded-holomorphic ideal that can be generated by composition with the ideal of ( p , q ) \left(p,q) -compact operators. In addition, we study Mujica’s linearization of such mappings, its relation with the ( u * v * + t v * + t u * ) t u * v * \left({u}^{* }{v}^{* }+t{v}^{* }+t{u}^{* })/t{u}^{* }{v}^{* } -Banach bounded-holomorphic composition ideal of the ( t , u , v ) \left(t,u,v) -nuclear holomorphic mappings for t , u , v [ 1 , ] t,u,v\in \left[1,\infty ] , its holomorphic transposition via the injective hull of the ideal of ( p , q * , 1 ) \left(p,{q}^{* },1) -nuclear operators, the Möbius invariance of ( p , q ) \left(p,q) -compact holomorphic mappings on D {\mathbb{D}} , and its full compact factorization through a compact holomorphic mapping, a ( p , q ) \left(p,q) -compact operator, and a compact operator.
(p,q)-全态映射空间的紧密性
基于对于 p∈ [ 1 , ∞ ] p\in \left[1,\infty ] 和 q∈ [ 1 , p * ] q\in \left[1,{p}^{* }] 的 ( p , q ) \left(p,q) -compact 算子的概念,我们引入并研究了巴拿赫空间之间的 ( p , q ) \left(p,q) -compact 全态映射的概念。我们证明,由这种映射形成的空间是一个投射 p q ∕ ( p + q ) pq/\left(p+q) -Banach 有界全形理想,它可以通过与 ( p , q ) \left(p,q) -compact 算子的理想组成而生成。此外,我们还研究了穆希卡对此类映射的线性化、它与 ( u * v * + t v * + t u * ) ∕ t u * v * \left({u}^{* }{v}^{* }+t{v}^{* }+t{u}^{* })/t{u}^{* }{v}^{* } 的关系。 -巴拿赫有界全形构成理想的 ( t , u , v ) \left(t,u,v)-核全形映射为 t , u , v∈ [ 1 , ∞ ] t,u,v\in \left[1,\infty ] 、通过( p , q * , 1 ) \left(p,{q}^{* },1)-核算子的理想的注入全域、( p , q ) \left(p,q)-D{mathbb{D}}上紧凑全态映射的莫比乌斯不变性、以及通过(p, q ) \left(p,q)-D{mathbb{D}}的全紧凑因子化来实现其全态转置 及其通过紧凑全态映射、( p , q ) \left(p,q)-紧凑算子和紧凑算子的全紧凑因式分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Mathematics
Open Mathematics MATHEMATICS-
CiteScore
2.40
自引率
5.90%
发文量
67
审稿时长
16 weeks
期刊介绍: Open Mathematics - formerly Central European Journal of Mathematics Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in all areas of mathematics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Open Mathematics is listed in Thomson Reuters - Current Contents/Physical, Chemical and Earth Sciences. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind. Aims and Scope The journal aims at presenting high-impact and relevant research on topics across the full span of mathematics. Coverage includes:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信