{"title":"(p, q)-Compactness in spaces of holomorphic mappings","authors":"Antonio Jiménez-Vargas, David Ruiz-Casternado","doi":"10.1515/math-2023-0183","DOIUrl":null,"url":null,"abstract":"Based on the concept of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0183_eq_001.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mi>q</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(p,q)</jats:tex-math> </jats:alternatives> </jats:inline-formula>-compact operator for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0183_eq_002.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>p</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi>∞</m:mi> </m:mrow> <m:mo>]</m:mo> </m:mrow> </m:math> <jats:tex-math>p\\in \\left[1,\\infty ]</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0183_eq_003.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>q</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:msup> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> </m:mrow> <m:mo>]</m:mo> </m:mrow> </m:math> <jats:tex-math>q\\in \\left[1,{p}^{* }]</jats:tex-math> </jats:alternatives> </jats:inline-formula>, we introduce and study the notion of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0183_eq_004.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mi>q</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(p,q)</jats:tex-math> </jats:alternatives> </jats:inline-formula>-compact holomorphic mapping between Banach spaces. We prove that the space formed by such mappings is a surjective <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0183_eq_005.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>p</m:mi> <m:mi>q</m:mi> <m:mo>∕</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>+</m:mo> <m:mi>q</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>pq/\\left(p+q)</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Banach bounded-holomorphic ideal that can be generated by composition with the ideal of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0183_eq_006.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mi>q</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(p,q)</jats:tex-math> </jats:alternatives> </jats:inline-formula>-compact operators. In addition, we study Mujica’s linearization of such mappings, its relation with the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0183_eq_007.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> <m:msup> <m:mrow> <m:mi>v</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> <m:mo>+</m:mo> <m:mi>t</m:mi> <m:msup> <m:mrow> <m:mi>v</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> <m:mo>+</m:mo> <m:mi>t</m:mi> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>∕</m:mo> <m:mi>t</m:mi> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> <m:msup> <m:mrow> <m:mi>v</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> </m:math> <jats:tex-math>\\left({u}^{* }{v}^{* }+t{v}^{* }+t{u}^{* })/t{u}^{* }{v}^{* }</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Banach bounded-holomorphic composition ideal of the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0183_eq_008.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> <m:mo>,</m:mo> <m:mi>u</m:mi> <m:mo>,</m:mo> <m:mi>v</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(t,u,v)</jats:tex-math> </jats:alternatives> </jats:inline-formula>-nuclear holomorphic mappings for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0183_eq_009.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>t</m:mi> <m:mo>,</m:mo> <m:mi>u</m:mi> <m:mo>,</m:mo> <m:mi>v</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi>∞</m:mi> </m:mrow> <m:mo>]</m:mo> </m:mrow> </m:math> <jats:tex-math>t,u,v\\in \\left[1,\\infty ]</jats:tex-math> </jats:alternatives> </jats:inline-formula>, its holomorphic transposition via the injective hull of the ideal of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0183_eq_010.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:msup> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> <m:mo>,</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(p,{q}^{* },1)</jats:tex-math> </jats:alternatives> </jats:inline-formula>-nuclear operators, the Möbius invariance of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0183_eq_011.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mi>q</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(p,q)</jats:tex-math> </jats:alternatives> </jats:inline-formula>-compact holomorphic mappings on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0183_eq_012.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"double-struck\">D</m:mi> </m:math> <jats:tex-math>{\\mathbb{D}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and its full compact factorization through a compact holomorphic mapping, a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0183_eq_013.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mi>q</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(p,q)</jats:tex-math> </jats:alternatives> </jats:inline-formula>-compact operator, and a compact operator.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2023-0183","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Based on the concept of (p,q)\left(p,q)-compact operator for p∈[1,∞]p\in \left[1,\infty ] and q∈[1,p*]q\in \left[1,{p}^{* }], we introduce and study the notion of (p,q)\left(p,q)-compact holomorphic mapping between Banach spaces. We prove that the space formed by such mappings is a surjective pq∕(p+q)pq/\left(p+q)-Banach bounded-holomorphic ideal that can be generated by composition with the ideal of (p,q)\left(p,q)-compact operators. In addition, we study Mujica’s linearization of such mappings, its relation with the (u*v*+tv*+tu*)∕tu*v*\left({u}^{* }{v}^{* }+t{v}^{* }+t{u}^{* })/t{u}^{* }{v}^{* }-Banach bounded-holomorphic composition ideal of the (t,u,v)\left(t,u,v)-nuclear holomorphic mappings for t,u,v∈[1,∞]t,u,v\in \left[1,\infty ], its holomorphic transposition via the injective hull of the ideal of (p,q*,1)\left(p,{q}^{* },1)-nuclear operators, the Möbius invariance of (p,q)\left(p,q)-compact holomorphic mappings on D{\mathbb{D}}, and its full compact factorization through a compact holomorphic mapping, a (p,q)\left(p,q)-compact operator, and a compact operator.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.