{"title":"КЛАСИФІКАЦІЯ МЕТОДІВ ДИСКРЕТНОГО ЛОГАРИФМУВАННЯ НА ЕЛІПТИЧНІЙ КРИВІЙ","authors":"М. В. Онай, Д. Т. Гулько","doi":"10.35546/kntu2078-4481.2024.1.37","DOIUrl":null,"url":null,"abstract":"У цій роботі проведено аналіз та класифікацію методів розв’язання задачі дискретного логарифмування у мультиплікативних та адитивних групах, а також обґрунтовано актуальність такого аналізу. Особливий акцент зроблено на розв’язанні цієї задачі на еліптичних кривих над скінченними полями. Робота спрямована на підвищення стійкості криптографічних систем шляхом аналізу та класифікації існуючих методів вирішення задачі дискретного логарифмування. У статті розглянуто такі методи: метод перебору, метод Поліга-Геллмана, метод Деніела Шенкса та його модифікації, а саме метод Кенгуру та метод “Two Grumpy Giants and a Baby”. Окрім того, у роботі розглянуто ρ-метод Полларда та його модифікацію, що передбачає розпаралелення на декілька потоків виконання, а також метод Лас-Вегаса – сучасний метод, що використовує матричні обчислення для розв'язання задачі дискретного логарифмування. Ключовим аспектом цієї статті є комплексний порівняльний аналіз методів дискретного логарифмування, результати аналізу наведено у відповідних таблицях, де подана їх часова та просторова складність, а також низка інших показників. Проведений аналіз надає інформацію про ефективність, безпеку та практичність кожного методу, закладає основу для подальших досліджень, а також дозволяє будувати більш стійкі криптосистеми. Визначено, що ρ-метод Полларда має найкращий баланс між швидкодією та пам’яттю, що використовується, тому висунуто гіпотези щодо його покращення. Перша гіпотеза полягає у тому, що при перевірці на існування колізії на кожній ітерації алгоритму, що реалізує цей метод, доцільно порівнювати не точки, а їх класи еквівалентності. Друга гіпотеза покращення полягає у скороченні інтервалу, в якому знаходиться колізія. Іншим перспективним методом вирішення задачі дискретного логарифмування є метод Лас-Вегаса, що має високу швидкодію, проте цей метод не гарантує рішення і має високу просторову складність.","PeriodicalId":518826,"journal":{"name":"Вісник Херсонського національного технічного університету","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Вісник Херсонського національного технічного університету","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35546/kntu2078-4481.2024.1.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
У цій роботі проведено аналіз та класифікацію методів розв’язання задачі дискретного логарифмування у мультиплікативних та адитивних групах, а також обґрунтовано актуальність такого аналізу. Особливий акцент зроблено на розв’язанні цієї задачі на еліптичних кривих над скінченними полями. Робота спрямована на підвищення стійкості криптографічних систем шляхом аналізу та класифікації існуючих методів вирішення задачі дискретного логарифмування. У статті розглянуто такі методи: метод перебору, метод Поліга-Геллмана, метод Деніела Шенкса та його модифікації, а саме метод Кенгуру та метод “Two Grumpy Giants and a Baby”. Окрім того, у роботі розглянуто ρ-метод Полларда та його модифікацію, що передбачає розпаралелення на декілька потоків виконання, а також метод Лас-Вегаса – сучасний метод, що використовує матричні обчислення для розв'язання задачі дискретного логарифмування. Ключовим аспектом цієї статті є комплексний порівняльний аналіз методів дискретного логарифмування, результати аналізу наведено у відповідних таблицях, де подана їх часова та просторова складність, а також низка інших показників. Проведений аналіз надає інформацію про ефективність, безпеку та практичність кожного методу, закладає основу для подальших досліджень, а також дозволяє будувати більш стійкі криптосистеми. Визначено, що ρ-метод Полларда має найкращий баланс між швидкодією та пам’яттю, що використовується, тому висунуто гіпотези щодо його покращення. Перша гіпотеза полягає у тому, що при перевірці на існування колізії на кожній ітерації алгоритму, що реалізує цей метод, доцільно порівнювати не точки, а їх класи еквівалентності. Друга гіпотеза покращення полягає у скороченні інтервалу, в якому знаходиться колізія. Іншим перспективним методом вирішення задачі дискретного логарифмування є метод Лас-Вегаса, що має високу швидкодію, проте цей метод не гарантує рішення і має високу просторову складність.