A constraint qualification for the dislocation hyperbolic augmented Lagrangian algorithm

Q3 Mathematics
Lennin Mallma Ramirez , Nelson Maculan , Adilson Elias Xavier , Vinicius Layter Xavier
{"title":"A constraint qualification for the dislocation hyperbolic augmented Lagrangian algorithm","authors":"Lennin Mallma Ramirez ,&nbsp;Nelson Maculan ,&nbsp;Adilson Elias Xavier ,&nbsp;Vinicius Layter Xavier","doi":"10.1016/j.rico.2024.100429","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study an augmented Lagrangian-type algorithm called the Dislocation Hyperbolic Augmented Lagrangian Algorithm (DHALA), which solves an inequality nonconvex optimization problem. We show that the sequence generated by DHALA converges to a Karush–Kuhn–Tucker (KKT) point under the Mangasarian–Fromovitz constraint qualification. The contribution of our work is to consider a constraint qualification into this algorithm. Finally, we present some computational illustrations to demonstrate the performance our algorithm works.</p></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"15 ","pages":"Article 100429"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666720724000596/pdfft?md5=6b2765e03f40da9b2d8677e849370378&pid=1-s2.0-S2666720724000596-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666720724000596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study an augmented Lagrangian-type algorithm called the Dislocation Hyperbolic Augmented Lagrangian Algorithm (DHALA), which solves an inequality nonconvex optimization problem. We show that the sequence generated by DHALA converges to a Karush–Kuhn–Tucker (KKT) point under the Mangasarian–Fromovitz constraint qualification. The contribution of our work is to consider a constraint qualification into this algorithm. Finally, we present some computational illustrations to demonstrate the performance our algorithm works.

错位双曲增强拉格朗日算法的约束条件
本文研究了一种称为 "位错双曲增强拉格朗日算法(DHALA)"的增强拉格朗日类型算法,该算法用于解决不等式非凸优化问题。我们证明,在 Mangasarian-Fromovitz 约束条件下,DHALA 生成的序列会收敛到 Karush-Kuhn-Tucker (KKT) 点。我们工作的贡献在于将约束条件考虑到了这一算法中。最后,我们给出了一些计算示例,以展示我们算法的工作性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Control and Optimization
Results in Control and Optimization Mathematics-Control and Optimization
CiteScore
3.00
自引率
0.00%
发文量
51
审稿时长
91 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信