Few-shot learning for skin lesion classification: A prototypical networks approach

Q1 Medicine
Sireesha Chamarthi , Katharina Fogelberg , Jakob Gawlikowski , Titus J. Brinker
{"title":"Few-shot learning for skin lesion classification: A prototypical networks approach","authors":"Sireesha Chamarthi ,&nbsp;Katharina Fogelberg ,&nbsp;Jakob Gawlikowski ,&nbsp;Titus J. Brinker","doi":"10.1016/j.imu.2024.101520","DOIUrl":null,"url":null,"abstract":"<div><p>Prototypical networks (PN) have emerged as one of multiple effective approaches for few-shot learning (FSL), even in medical image classification. This study focuses on implementing a PN for skin lesion classification to assess its performance, generalizability, and robustness when applied across 11 dermoscopic image domains. Unlike conventional FSL scenarios, where the performance is evaluated for unseen classes in the test set, our analysis extends this to evaluate PNs on a complete hold-out dataset with the same classes from a different domain. Differences in a patient’s age, lesion localization, or image acquisition systems variations mimic real-world cross-domain conditions in a clinic. Given the scarcity of medical datasets, this assessment is crucial for potentially translating such systems into real-world clinical settings to support physicians with the diagnosis. Our primary focus is two-fold: investigating whether a PN performs on par with a baseline classifier, even using only a limited number of reference samples from the hold-out test set (in-domain) and whether a PN can generalize to the same classes of unseen domains (cross-domain). Our analysis uncovers that a PN can perform on par with the baseline classifier in an in-domain setting, even with only a few support samples. However, in cross-domain scenarios, a PN exhibits improved performance only on specific domains, while others demonstrate similar or even decreased performance when confronted with a smaller number of images. Our findings contribute to comprehending potential opportunities and limitations of FSL in dermatological practice.</p></div>","PeriodicalId":13953,"journal":{"name":"Informatics in Medicine Unlocked","volume":"48 ","pages":"Article 101520"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352914824000765/pdfft?md5=fc2b86c841307a0c99065159261be4f6&pid=1-s2.0-S2352914824000765-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics in Medicine Unlocked","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352914824000765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Prototypical networks (PN) have emerged as one of multiple effective approaches for few-shot learning (FSL), even in medical image classification. This study focuses on implementing a PN for skin lesion classification to assess its performance, generalizability, and robustness when applied across 11 dermoscopic image domains. Unlike conventional FSL scenarios, where the performance is evaluated for unseen classes in the test set, our analysis extends this to evaluate PNs on a complete hold-out dataset with the same classes from a different domain. Differences in a patient’s age, lesion localization, or image acquisition systems variations mimic real-world cross-domain conditions in a clinic. Given the scarcity of medical datasets, this assessment is crucial for potentially translating such systems into real-world clinical settings to support physicians with the diagnosis. Our primary focus is two-fold: investigating whether a PN performs on par with a baseline classifier, even using only a limited number of reference samples from the hold-out test set (in-domain) and whether a PN can generalize to the same classes of unseen domains (cross-domain). Our analysis uncovers that a PN can perform on par with the baseline classifier in an in-domain setting, even with only a few support samples. However, in cross-domain scenarios, a PN exhibits improved performance only on specific domains, while others demonstrate similar or even decreased performance when confronted with a smaller number of images. Our findings contribute to comprehending potential opportunities and limitations of FSL in dermatological practice.

皮损分类的少量学习:原型网络方法
原型网络(Prototypical Network,简称 PN)已成为少次学习(FSL)的多种有效方法之一,甚至在医学图像分类中也是如此。本研究的重点是在皮肤病变分类中实施原型网络,以评估其在 11 个皮肤镜图像域中应用时的性能、通用性和鲁棒性。与传统的 FSL 方案不同,我们的分析是针对测试集中未见的类别进行性能评估,并将其扩展到在一个完整的保留数据集上对 PN 进行评估,该数据集包含来自不同领域的相同类别。病人的年龄、病灶定位或图像采集系统的差异可以模拟诊所中真实的跨领域情况。鉴于医学数据集的稀缺性,这种评估对于将此类系统转化为真实世界的临床环境以支持医生诊断至关重要。我们的主要关注点有两个方面:研究 PN 的性能是否与基线分类器相当,即使只使用有限数量的来自保留测试集的参考样本(领域内);以及 PN 是否能推广到相同类别的未见领域(跨领域)。我们的分析表明,在域内环境中,即使只有少量支持样本,PN 的性能也能与基准分类器相媲美。然而,在跨域场景中,一个 PN 仅在特定域中表现出更高的性能,而其他 PN 在面对较少数量的图像时表现出类似甚至更低的性能。我们的研究结果有助于理解 FSL 在皮肤科实践中的潜在机会和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Informatics in Medicine Unlocked
Informatics in Medicine Unlocked Medicine-Health Informatics
CiteScore
9.50
自引率
0.00%
发文量
282
审稿时长
39 days
期刊介绍: Informatics in Medicine Unlocked (IMU) is an international gold open access journal covering a broad spectrum of topics within medical informatics, including (but not limited to) papers focusing on imaging, pathology, teledermatology, public health, ophthalmological, nursing and translational medicine informatics. The full papers that are published in the journal are accessible to all who visit the website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信