Sireesha Chamarthi , Katharina Fogelberg , Jakob Gawlikowski , Titus J. Brinker
{"title":"Few-shot learning for skin lesion classification: A prototypical networks approach","authors":"Sireesha Chamarthi , Katharina Fogelberg , Jakob Gawlikowski , Titus J. Brinker","doi":"10.1016/j.imu.2024.101520","DOIUrl":null,"url":null,"abstract":"<div><p>Prototypical networks (PN) have emerged as one of multiple effective approaches for few-shot learning (FSL), even in medical image classification. This study focuses on implementing a PN for skin lesion classification to assess its performance, generalizability, and robustness when applied across 11 dermoscopic image domains. Unlike conventional FSL scenarios, where the performance is evaluated for unseen classes in the test set, our analysis extends this to evaluate PNs on a complete hold-out dataset with the same classes from a different domain. Differences in a patient’s age, lesion localization, or image acquisition systems variations mimic real-world cross-domain conditions in a clinic. Given the scarcity of medical datasets, this assessment is crucial for potentially translating such systems into real-world clinical settings to support physicians with the diagnosis. Our primary focus is two-fold: investigating whether a PN performs on par with a baseline classifier, even using only a limited number of reference samples from the hold-out test set (in-domain) and whether a PN can generalize to the same classes of unseen domains (cross-domain). Our analysis uncovers that a PN can perform on par with the baseline classifier in an in-domain setting, even with only a few support samples. However, in cross-domain scenarios, a PN exhibits improved performance only on specific domains, while others demonstrate similar or even decreased performance when confronted with a smaller number of images. Our findings contribute to comprehending potential opportunities and limitations of FSL in dermatological practice.</p></div>","PeriodicalId":13953,"journal":{"name":"Informatics in Medicine Unlocked","volume":"48 ","pages":"Article 101520"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352914824000765/pdfft?md5=fc2b86c841307a0c99065159261be4f6&pid=1-s2.0-S2352914824000765-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics in Medicine Unlocked","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352914824000765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Prototypical networks (PN) have emerged as one of multiple effective approaches for few-shot learning (FSL), even in medical image classification. This study focuses on implementing a PN for skin lesion classification to assess its performance, generalizability, and robustness when applied across 11 dermoscopic image domains. Unlike conventional FSL scenarios, where the performance is evaluated for unseen classes in the test set, our analysis extends this to evaluate PNs on a complete hold-out dataset with the same classes from a different domain. Differences in a patient’s age, lesion localization, or image acquisition systems variations mimic real-world cross-domain conditions in a clinic. Given the scarcity of medical datasets, this assessment is crucial for potentially translating such systems into real-world clinical settings to support physicians with the diagnosis. Our primary focus is two-fold: investigating whether a PN performs on par with a baseline classifier, even using only a limited number of reference samples from the hold-out test set (in-domain) and whether a PN can generalize to the same classes of unseen domains (cross-domain). Our analysis uncovers that a PN can perform on par with the baseline classifier in an in-domain setting, even with only a few support samples. However, in cross-domain scenarios, a PN exhibits improved performance only on specific domains, while others demonstrate similar or even decreased performance when confronted with a smaller number of images. Our findings contribute to comprehending potential opportunities and limitations of FSL in dermatological practice.
期刊介绍:
Informatics in Medicine Unlocked (IMU) is an international gold open access journal covering a broad spectrum of topics within medical informatics, including (but not limited to) papers focusing on imaging, pathology, teledermatology, public health, ophthalmological, nursing and translational medicine informatics. The full papers that are published in the journal are accessible to all who visit the website.