{"title":"GalaxySagittarius-AF: Predicting Targets for Drug-Like Compounds in the Extended Human 3D Proteome","authors":"","doi":"10.1016/j.jmb.2024.168617","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, advancements in deep learning techniques have significantly expanded the structural coverage of the human proteome. GalaxySagittarius-AF translates these achievements in structure prediction into target prediction for druglike compounds by incorporating predicted structures. This web server searches the database of human protein structures using both similarity- and structure-based approaches, suggesting potential targets for a given druglike compound. In comparison to its predecessor, GalaxySagittarius, GalaxySagittarius-AF utilizes an enlarged structure database, incorporating curated AlphaFold model structures alongside their binding sites and ligands, predicted using an updated version of GalaxySite. GalaxySagittarius-AF covers a large human protein space compared to many other available computational target screening methods. The structure-based prediction method enhances the use of expanded structural information, differentiating it from other target prediction servers that rely on ligand-based methods. Additionally, the web server has undergone enhancements, operating two to three times faster than its predecessor. The updated report page provides comprehensive information on the sequence and structure of the predicted protein targets. GalaxySagittarius-AF is accessible at <span><span>https://galaxy.seoklab.org/sagittarius_af</span><svg><path></path></svg></span> without the need for registration.</p></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":"436 17","pages":"Article 168617"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022283624002122/pdfft?md5=0e0c23dccda32199932ab93f923b91bb&pid=1-s2.0-S0022283624002122-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022283624002122","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, advancements in deep learning techniques have significantly expanded the structural coverage of the human proteome. GalaxySagittarius-AF translates these achievements in structure prediction into target prediction for druglike compounds by incorporating predicted structures. This web server searches the database of human protein structures using both similarity- and structure-based approaches, suggesting potential targets for a given druglike compound. In comparison to its predecessor, GalaxySagittarius, GalaxySagittarius-AF utilizes an enlarged structure database, incorporating curated AlphaFold model structures alongside their binding sites and ligands, predicted using an updated version of GalaxySite. GalaxySagittarius-AF covers a large human protein space compared to many other available computational target screening methods. The structure-based prediction method enhances the use of expanded structural information, differentiating it from other target prediction servers that rely on ligand-based methods. Additionally, the web server has undergone enhancements, operating two to three times faster than its predecessor. The updated report page provides comprehensive information on the sequence and structure of the predicted protein targets. GalaxySagittarius-AF is accessible at https://galaxy.seoklab.org/sagittarius_af without the need for registration.
期刊介绍:
Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions.
Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.