{"title":"Tuning-free sparse clustering via alternating hard-thresholding","authors":"Wei Dong , Chen Xu , Jinhan Xie , Niansheng Tang","doi":"10.1016/j.jmva.2024.105330","DOIUrl":null,"url":null,"abstract":"<div><p>Model-based clustering is a commonly-used technique to partition heterogeneous data into homogeneous groups. When the analysis is to be conducted with a large number of features, analysts face simultaneous challenges in model interpretability, clustering accuracy, and computational efficiency. Several Bayesian and penalization methods have been proposed to select important features for model-based clustering. However, the performance of those methods relies on a careful algorithmic tuning, which can be time-consuming for high-dimensional cases. In this paper, we propose a new sparse clustering method based on alternating hard-thresholding. The new method is conceptually simple and tuning-free. With a user-specified sparsity level, it efficiently detects a set of key features by eliminating a large number of features that are less useful for clustering. Based on the selected key features, one can readily obtain an effective clustering of the original high-dimensional data under a general sparse covariance structure. Under mild conditions, we show that the new method leads to clusters with a misclassification rate consistent to the optimal rate as if the underlying true model were used. The promising performance of the new method is supported by both simulated and real data examples.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X2400037X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Model-based clustering is a commonly-used technique to partition heterogeneous data into homogeneous groups. When the analysis is to be conducted with a large number of features, analysts face simultaneous challenges in model interpretability, clustering accuracy, and computational efficiency. Several Bayesian and penalization methods have been proposed to select important features for model-based clustering. However, the performance of those methods relies on a careful algorithmic tuning, which can be time-consuming for high-dimensional cases. In this paper, we propose a new sparse clustering method based on alternating hard-thresholding. The new method is conceptually simple and tuning-free. With a user-specified sparsity level, it efficiently detects a set of key features by eliminating a large number of features that are less useful for clustering. Based on the selected key features, one can readily obtain an effective clustering of the original high-dimensional data under a general sparse covariance structure. Under mild conditions, we show that the new method leads to clusters with a misclassification rate consistent to the optimal rate as if the underlying true model were used. The promising performance of the new method is supported by both simulated and real data examples.
期刊介绍:
Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data.
The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of
Copula modeling
Functional data analysis
Graphical modeling
High-dimensional data analysis
Image analysis
Multivariate extreme-value theory
Sparse modeling
Spatial statistics.