{"title":"An in-fiber Mach–Zehnder strain sensor for studying multimode interference of light","authors":"Gang Zhang, Linguang Xu, Q. Ge","doi":"10.1119/5.0173941","DOIUrl":null,"url":null,"abstract":"Multimode interference of light is an optical interference phenomenon based on waveguides, which has broad applications in optical communication, lasers, and optical fiber sensing. Since optical fiber has become the most widely used optical waveguide in modern society, multimode interference in optical fibers is an ideal candidate for projects in university teaching laboratories. Here, we implement an in-fiber Mach–Zehnder strain sensor-based experiment to study multimode interference in optical fibers. The sensor is fabricated by fusion splicing a piece of thin core fiber between two single mode fibers. One end of the thin core fiber is spliced without a core offset, while the other end is spliced with a core offset. Due to the mode field diameter mismatch and core offset, cladding modes are excited and interfere with the core mode in thin core fiber. Students can observe the sensor fabrication demonstration and perform a strain test with an optical spectrum analyzer. The wavelength spectra captured by the optical spectrum analyzer under different strains are analyzed with the signal processing tools of fast Fourier transform and fast Fourier transform filter. Students then find characteristics of the multimode interference in the sensor from the analysis. The experiment extends undergraduates' knowledge of light interference and is an instructive exercise for them in modern coherence theory.","PeriodicalId":7589,"journal":{"name":"American Journal of Physics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1119/5.0173941","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0
Abstract
Multimode interference of light is an optical interference phenomenon based on waveguides, which has broad applications in optical communication, lasers, and optical fiber sensing. Since optical fiber has become the most widely used optical waveguide in modern society, multimode interference in optical fibers is an ideal candidate for projects in university teaching laboratories. Here, we implement an in-fiber Mach–Zehnder strain sensor-based experiment to study multimode interference in optical fibers. The sensor is fabricated by fusion splicing a piece of thin core fiber between two single mode fibers. One end of the thin core fiber is spliced without a core offset, while the other end is spliced with a core offset. Due to the mode field diameter mismatch and core offset, cladding modes are excited and interfere with the core mode in thin core fiber. Students can observe the sensor fabrication demonstration and perform a strain test with an optical spectrum analyzer. The wavelength spectra captured by the optical spectrum analyzer under different strains are analyzed with the signal processing tools of fast Fourier transform and fast Fourier transform filter. Students then find characteristics of the multimode interference in the sensor from the analysis. The experiment extends undergraduates' knowledge of light interference and is an instructive exercise for them in modern coherence theory.
期刊介绍:
The mission of the American Journal of Physics (AJP) is to publish articles on the educational and cultural aspects of physics that are useful, interesting, and accessible to a diverse audience of physics students, educators, and researchers. Our audience generally reads outside their specialties to broaden their understanding of physics and to expand and enhance their pedagogical toolkits at the undergraduate and graduate levels.