Machine learning models to predict rare earth elements distribution in Tethyan phosphate ore deposits: Geochemical and depositional environment implications

IF 2.6 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Nasreddine Tahar-Belkacem , Ouafi Ameur-Zaimeche , Rabah Kechiched , Abdelhamid Ouladmansour , Salim Heddam , David A. Wood , Roberto Buccione , Giovanni Mongelli
{"title":"Machine learning models to predict rare earth elements distribution in Tethyan phosphate ore deposits: Geochemical and depositional environment implications","authors":"Nasreddine Tahar-Belkacem ,&nbsp;Ouafi Ameur-Zaimeche ,&nbsp;Rabah Kechiched ,&nbsp;Abdelhamid Ouladmansour ,&nbsp;Salim Heddam ,&nbsp;David A. Wood ,&nbsp;Roberto Buccione ,&nbsp;Giovanni Mongelli","doi":"10.1016/j.chemer.2024.126128","DOIUrl":null,"url":null,"abstract":"<div><div><span><span>The global market for rare earth elements (REE) is growing rapidly, driven by rising demand and limited production sources, prompting interest in recovering REE from secondary sources such as phosphate deposits. The Tethyan belt, extending across </span>North Africa<span> and the Middle East contains substantial Upper Cretaceous<span><span> to Eocene REE-rich </span>phosphorite deposits but with limited geochemical data available. This study provides a novel machine-learning (ML) method to predict REE contents in these deposits and verify a useful geochemical classification based on the concentrations of nine major element oxides. Four ML models are developed to achieve this: eXtreme Gradient Boosting (XGBoost), Random Forest (RF), Support Vector Regression (SVR), and Decision Tree (DT). The datasets are divided geochemically into oxic and sub-oxic patterns and these are evaluated with the ML models separately and in combination to accurately predict light REE (LREE), heavy REE (HREE), and total REE contents (∑REE). For the oxic pattern dataset, Fe</span></span></span><sub>2</sub>O<sub>3</sub> and K<sub>2</sub><span>O exhibit the highest feature importance consistent with a glauconite influence. For the sub-oxic pattern dataset, MnO and SiO</span><sub>2</sub><span> exhibit the highest feature importance consistent with high terrigenous inputs (MnO), and silicification<span>. The ML results support the importance of the local deposition environment in determining REE distributions in these deposits. Paleogeography<span>, ocean-margin tectonics, sea-level oscillations, and marine currents exert influence on the local depositional environments. The eXtreme Gradient Boosting model generates the lowest REE prediction errors for all the datasets evaluated.</span></span></span></div></div>","PeriodicalId":55973,"journal":{"name":"Chemie Der Erde-Geochemistry","volume":"84 4","pages":"Article 126128"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemie Der Erde-Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009281924000527","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The global market for rare earth elements (REE) is growing rapidly, driven by rising demand and limited production sources, prompting interest in recovering REE from secondary sources such as phosphate deposits. The Tethyan belt, extending across North Africa and the Middle East contains substantial Upper Cretaceous to Eocene REE-rich phosphorite deposits but with limited geochemical data available. This study provides a novel machine-learning (ML) method to predict REE contents in these deposits and verify a useful geochemical classification based on the concentrations of nine major element oxides. Four ML models are developed to achieve this: eXtreme Gradient Boosting (XGBoost), Random Forest (RF), Support Vector Regression (SVR), and Decision Tree (DT). The datasets are divided geochemically into oxic and sub-oxic patterns and these are evaluated with the ML models separately and in combination to accurately predict light REE (LREE), heavy REE (HREE), and total REE contents (∑REE). For the oxic pattern dataset, Fe2O3 and K2O exhibit the highest feature importance consistent with a glauconite influence. For the sub-oxic pattern dataset, MnO and SiO2 exhibit the highest feature importance consistent with high terrigenous inputs (MnO), and silicification. The ML results support the importance of the local deposition environment in determining REE distributions in these deposits. Paleogeography, ocean-margin tectonics, sea-level oscillations, and marine currents exert influence on the local depositional environments. The eXtreme Gradient Boosting model generates the lowest REE prediction errors for all the datasets evaluated.

Abstract Image

Abstract Image

用机器学习模型预测泰西磷酸盐矿床中稀土元素的分布:地球化学和沉积环境的影响
在需求上升和生产来源有限的推动下,全球稀土元素市场正在迅速增长,促使人们对从磷酸盐矿床等二次资源中回收稀土元素产生了兴趣。横跨北非和中东的特提斯带包含大量的上白垩世至始新世富稀土磷矿矿床,但地球化学数据有限。该研究提供了一种新的机器学习(ML)方法来预测这些矿床中的稀土元素含量,并根据9种主要元素氧化物的浓度验证有用的地球化学分类。开发了四个ML模型来实现这一点:极端梯度增强(XGBoost),随机森林(RF),支持向量回归(SVR)和决策树(DT)。将数据集地球化学分为氧型和亚氧型,分别用ML模型和组合模型进行评价,准确预测轻REE (LREE)、重REE (HREE)和总REE(∑REE)含量。对于氧模式数据集,Fe2O3和K2O表现出最高的特征重要性,与海绿石的影响一致。对于亚氧模式数据集,MnO和SiO2表现出最高的特征重要性,与高陆源输入(MnO)和硅化一致。ML结果支持了局部沉积环境对确定这些矿床中稀土元素分布的重要性。古地理、洋缘构造、海平面振荡和海流对局部沉积环境有影响。在所有评估的数据集中,极端梯度增强模型产生的REE预测误差最低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemie Der Erde-Geochemistry
Chemie Der Erde-Geochemistry 地学-地球化学与地球物理
CiteScore
7.10
自引率
0.00%
发文量
40
审稿时长
3.0 months
期刊介绍: GEOCHEMISTRY was founded as Chemie der Erde 1914 in Jena, and, hence, is one of the oldest journals for geochemistry-related topics. GEOCHEMISTRY (formerly Chemie der Erde / Geochemistry) publishes original research papers, short communications, reviews of selected topics, and high-class invited review articles addressed at broad geosciences audience. Publications dealing with interdisciplinary questions are particularly welcome. Young scientists are especially encouraged to submit their work. Contributions will be published exclusively in English. The journal, through very personalized consultation and its worldwide distribution, offers entry into the world of international scientific communication, and promotes interdisciplinary discussion on chemical problems in a broad spectrum of geosciences. The following topics are covered by the expertise of the members of the editorial board (see below): -cosmochemistry, meteoritics- igneous, metamorphic, and sedimentary petrology- volcanology- low & high temperature geochemistry- experimental - theoretical - field related studies- mineralogy - crystallography- environmental geosciences- archaeometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信