{"title":"On the relations for the cluster tilted algebra resulting from a monomial tilted algebra","authors":"Melissa DiMarco","doi":"10.1016/j.jaca.2024.100016","DOIUrl":null,"url":null,"abstract":"<div><p>First constructed by Fomin and Zelevinski <span>[13]</span>, cluster algebras have been studied from many different perspectives. One such perspective is the study of cluster tilted algebras. We focus on when <em>C</em> is a monomial tilted algebras and <span><math><mover><mrow><mi>C</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> its associated cluster tilted algebra. We show the set of partial derivatives of the Keller potential form a minimal set of relations for <span><math><mover><mrow><mi>C</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> and we show that if <em>C</em> is also Koszul, then there are overlap relations that can be used to determine if <span><math><mover><mrow><mi>C</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> is Koszul. We use the tools of noncommutative Gröbner basis theory to prove these results.</p></div>","PeriodicalId":100767,"journal":{"name":"Journal of Computational Algebra","volume":"10 ","pages":"Article 100016"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772827724000068/pdfft?md5=c4be9e88e623b3465a4504a71130ef70&pid=1-s2.0-S2772827724000068-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Algebra","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772827724000068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
First constructed by Fomin and Zelevinski [13], cluster algebras have been studied from many different perspectives. One such perspective is the study of cluster tilted algebras. We focus on when C is a monomial tilted algebras and its associated cluster tilted algebra. We show the set of partial derivatives of the Keller potential form a minimal set of relations for and we show that if C is also Koszul, then there are overlap relations that can be used to determine if is Koszul. We use the tools of noncommutative Gröbner basis theory to prove these results.