Advancing delirium classification: A clinical notes-based natural language processing-supported machine learning model

Sobia Amjad , Natasha E. Holmes , Kartik Kishore , Marcus Young , James Bailey , Rinaldo Bellomo , Karin Verspoor
{"title":"Advancing delirium classification: A clinical notes-based natural language processing-supported machine learning model","authors":"Sobia Amjad ,&nbsp;Natasha E. Holmes ,&nbsp;Kartik Kishore ,&nbsp;Marcus Young ,&nbsp;James Bailey ,&nbsp;Rinaldo Bellomo ,&nbsp;Karin Verspoor","doi":"10.1016/j.ibmed.2024.100140","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>The study of the epidemiology of delirium in hospitalized patients is challenging. We aimed to identify the presence or absence of delirium from clinical text notes using natural language processing (NLP) techniques and machine learning (ML) models.</p></div><div><h3>Materials and methods</h3><p>We developed a delirium predictive model using 942 clinical notes from hospitalized patients with an ICD-10 delirium hospital discharge code. Moreover, we implemented ML models using a) delirium-suggestive words from an expert-defined dictionary or b) free text in clinical notes. Both strategies considered positive and negative delirium-associated words.</p></div><div><h3>Results</h3><p>At the note level, for the dictionary method, the logistic regression model achieved an area under the receiver-operating curve (AUROC) of 0.917 for positive words and 0.914 for combined positive and negative words. The areas under the precision-recall curve (AUPR) were 0.893 and 0.897, respectively. For the free-text method, the model achieved an AUROC of 0.826 and 0.830 and AUPR of 0.852 and 0.856, respectively.</p></div><div><h3>Discussion</h3><p>NLP-based ML models accurately identified the presence of delirium in clinical notes. The dictionary-based method was superior to the free-text method. The use of negative features improved performance in both methods.</p></div><div><h3>Conclusion</h3><p>Our proposed NLP-based ML model identified delirium in clinical notes. This model could automatically screen millions of notes and facilitate the study of the epidemiology of in-hospital delirium.</p></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"9 ","pages":"Article 100140"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666521224000073/pdfft?md5=0f2ca58608d82ae6134a46fa069cda02&pid=1-s2.0-S2666521224000073-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521224000073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

The study of the epidemiology of delirium in hospitalized patients is challenging. We aimed to identify the presence or absence of delirium from clinical text notes using natural language processing (NLP) techniques and machine learning (ML) models.

Materials and methods

We developed a delirium predictive model using 942 clinical notes from hospitalized patients with an ICD-10 delirium hospital discharge code. Moreover, we implemented ML models using a) delirium-suggestive words from an expert-defined dictionary or b) free text in clinical notes. Both strategies considered positive and negative delirium-associated words.

Results

At the note level, for the dictionary method, the logistic regression model achieved an area under the receiver-operating curve (AUROC) of 0.917 for positive words and 0.914 for combined positive and negative words. The areas under the precision-recall curve (AUPR) were 0.893 and 0.897, respectively. For the free-text method, the model achieved an AUROC of 0.826 and 0.830 and AUPR of 0.852 and 0.856, respectively.

Discussion

NLP-based ML models accurately identified the presence of delirium in clinical notes. The dictionary-based method was superior to the free-text method. The use of negative features improved performance in both methods.

Conclusion

Our proposed NLP-based ML model identified delirium in clinical notes. This model could automatically screen millions of notes and facilitate the study of the epidemiology of in-hospital delirium.

推进谵妄分类:基于临床笔记的自然语言处理辅助机器学习模型
目的研究住院患者谵妄的流行病学具有挑战性。我们的目的是利用自然语言处理(NLP)技术和机器学习(ML)模型从临床文本记录中识别是否存在谵妄。此外,我们还使用 a) 专家定义字典中的谵妄提示词或 b) 临床笔记中的自由文本,建立了 ML 模型。结果在笔记层面,对于字典方法,逻辑回归模型的接收者工作曲线下面积(AUROC)为 0.917(阳性词),而对于阳性词和阴性词的组合,接收者工作曲线下面积(AUROC)为 0.914。精确度-召回曲线下面积(AUPR)分别为 0.893 和 0.897。基于 NLP 的 ML 模型能准确识别临床笔记中是否存在谵妄。基于词典的方法优于自由文本方法。结论我们提出的基于 NLP 的 ML 模型可以识别临床笔记中的谵妄。该模型可以自动筛选数百万份病历,有助于研究院内谵妄的流行病学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信