Data-driven strategies for digital native market segmentation using clustering

Md Ashraf Uddin , Md. Alamin Talukder , Md. Redwan Ahmed , Ansam Khraisat , Ammar Alazab , Md. Manowarul Islam , Sunil Aryal , Ferdaus Anam Jibon
{"title":"Data-driven strategies for digital native market segmentation using clustering","authors":"Md Ashraf Uddin ,&nbsp;Md. Alamin Talukder ,&nbsp;Md. Redwan Ahmed ,&nbsp;Ansam Khraisat ,&nbsp;Ammar Alazab ,&nbsp;Md. Manowarul Islam ,&nbsp;Sunil Aryal ,&nbsp;Ferdaus Anam Jibon","doi":"10.1016/j.ijcce.2024.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>The rapid growth of internet users and social networking sites presents significant challenges for entrepreneurs and marketers. Understanding the evolving behavioral and psychological patterns across consumer demographics is crucial for adapting business models effectively. Particularly, the emergence of new firms targeting adolescents and future generations underscores the importance of comprehending online consumer behavior and communication dynamics. To tackle these challenges, we introduce a Machine Learning-based Digital Native Market Segmentation designed to cater specifically to the interests of digital natives. Leveraging an open-access prototype dataset from social networking sites (SNS), our study employs a variety of clustering techniques, including Kmeans, MiniBatch Kmeans, AGNES, and Fuzzy C-means, to uncover hidden interests of teenage consumers from SNS data. Through rigorous evaluation of these clustering approaches by default parameters, we identify the optimal number of clusters and group consumers with similar tastes effectively. Our findings provide actionable insights into business impact and critical patterns driving future marketing growth. In our experiment, we systematically evaluate various clustering techniques, and notably, the Kmeans cluster outperforms others, demonstrating strong segmentation ability in the digital market. Specifically, it achieves silhouette scores of 63.90% and 58.06% for 2 and 3 clusters, respectively, highlighting its effectiveness in segmenting the digital market.</p></div>","PeriodicalId":100694,"journal":{"name":"International Journal of Cognitive Computing in Engineering","volume":"5 ","pages":"Pages 178-191"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666307424000135/pdfft?md5=ec289b65f0b3a99e015c8fec612c23f6&pid=1-s2.0-S2666307424000135-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cognitive Computing in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666307424000135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid growth of internet users and social networking sites presents significant challenges for entrepreneurs and marketers. Understanding the evolving behavioral and psychological patterns across consumer demographics is crucial for adapting business models effectively. Particularly, the emergence of new firms targeting adolescents and future generations underscores the importance of comprehending online consumer behavior and communication dynamics. To tackle these challenges, we introduce a Machine Learning-based Digital Native Market Segmentation designed to cater specifically to the interests of digital natives. Leveraging an open-access prototype dataset from social networking sites (SNS), our study employs a variety of clustering techniques, including Kmeans, MiniBatch Kmeans, AGNES, and Fuzzy C-means, to uncover hidden interests of teenage consumers from SNS data. Through rigorous evaluation of these clustering approaches by default parameters, we identify the optimal number of clusters and group consumers with similar tastes effectively. Our findings provide actionable insights into business impact and critical patterns driving future marketing growth. In our experiment, we systematically evaluate various clustering techniques, and notably, the Kmeans cluster outperforms others, demonstrating strong segmentation ability in the digital market. Specifically, it achieves silhouette scores of 63.90% and 58.06% for 2 and 3 clusters, respectively, highlighting its effectiveness in segmenting the digital market.

利用聚类进行数字原生市场细分的数据驱动战略
互联网用户和社交网站的快速增长给企业家和营销人员带来了巨大挑战。要有效地调整商业模式,了解不同消费群体不断变化的行为和心理模式至关重要。尤其是针对青少年和下一代的新公司的出现,更凸显了理解网络消费者行为和沟通动态的重要性。为了应对这些挑战,我们推出了基于机器学习的数字原生市场细分,旨在专门迎合数字原生用户的兴趣。利用来自社交网站(SNS)的开放访问原型数据集,我们的研究采用了多种聚类技术,包括 Kmeans、MiniBatch Kmeans、AGNES 和 Fuzzy C-means,从 SNS 数据中挖掘青少年消费者的隐藏兴趣。通过对这些聚类方法的默认参数进行严格评估,我们确定了最佳聚类数量,并有效地将具有相似品味的消费者分组。我们的研究结果为商业影响和推动未来营销增长的关键模式提供了可行的见解。在我们的实验中,我们系统地评估了各种聚类技术,值得注意的是,Kmeans 聚类优于其他聚类,在数字市场中表现出强大的细分能力。具体来说,它在 2 个和 3 个聚类中分别获得了 63.90% 和 58.06% 的剪影分数,凸显了其在细分数字市场方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信