PGC-1α inhibits NLRP3 signaling through transcriptional activation of POP1 to alleviate inflammation and strengthen osteogenic differentiation of lipopolysaccharide-induced human periodontal stem cells
{"title":"PGC-1α inhibits NLRP3 signaling through transcriptional activation of POP1 to alleviate inflammation and strengthen osteogenic differentiation of lipopolysaccharide-induced human periodontal stem cells","authors":"Fuying Liang , Shanshan Huang","doi":"10.1016/j.prostaglandins.2024.106853","DOIUrl":null,"url":null,"abstract":"<div><p>Periodontitis is a chronic infectious disease that affects the oral health of adults. Periodontal stem cells (PDLSCs) have good self-renewal and multipotential differentiation abilities to maintain the integrity of periodontal support structure and repair defects. This study aimed to elucidate the role of peroxisome proliferator activated receptor-γ co-activator 1-α (PGC-1α) in lipopolysaccharide (LPS)-induced PDLSCs and the underlying mechanisms related to predicated that pyrin domain (PYD)-only protein 1 (POP1). Notably downregulated PGC-1α and POP1 expression was observed in LPS-induced PDLSCs. PGC-1α or POP1 overexpression significantly reduced the inflammation and enhanced the osteogenic differentiation of LPS-treated PDLSCs. Particularly, PGC-1 bound to POP1 promoter region and upregulated POP1 expression. Moreover, POP1 knockdown ameliorated the impacts of PGC-1α overexpression on the inflammation and osteogenic differentiation in LPS-induced PDLSCs. Besides, PGC-1α inactivated NLRP3 signaling in LPS-treated PDLSCs, which was reversed by POP1 knockdown. Taken together, PGC-1α inhibits NLRP3 signaling through transcriptional activation of POP1, thereby alleviating inflammation and strengthening osteogenic differentiation of LPS-induced PDLSCs.</p></div>","PeriodicalId":21161,"journal":{"name":"Prostaglandins & other lipid mediators","volume":"174 ","pages":"Article 106853"},"PeriodicalIF":2.5000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prostaglandins & other lipid mediators","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1098882324000479","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Periodontitis is a chronic infectious disease that affects the oral health of adults. Periodontal stem cells (PDLSCs) have good self-renewal and multipotential differentiation abilities to maintain the integrity of periodontal support structure and repair defects. This study aimed to elucidate the role of peroxisome proliferator activated receptor-γ co-activator 1-α (PGC-1α) in lipopolysaccharide (LPS)-induced PDLSCs and the underlying mechanisms related to predicated that pyrin domain (PYD)-only protein 1 (POP1). Notably downregulated PGC-1α and POP1 expression was observed in LPS-induced PDLSCs. PGC-1α or POP1 overexpression significantly reduced the inflammation and enhanced the osteogenic differentiation of LPS-treated PDLSCs. Particularly, PGC-1 bound to POP1 promoter region and upregulated POP1 expression. Moreover, POP1 knockdown ameliorated the impacts of PGC-1α overexpression on the inflammation and osteogenic differentiation in LPS-induced PDLSCs. Besides, PGC-1α inactivated NLRP3 signaling in LPS-treated PDLSCs, which was reversed by POP1 knockdown. Taken together, PGC-1α inhibits NLRP3 signaling through transcriptional activation of POP1, thereby alleviating inflammation and strengthening osteogenic differentiation of LPS-induced PDLSCs.
期刊介绍:
Prostaglandins & Other Lipid Mediators is the original and foremost journal dealing with prostaglandins and related lipid mediator substances. It includes basic and clinical studies related to the pharmacology, physiology, pathology and biochemistry of lipid mediators.
Prostaglandins & Other Lipid Mediators invites reports of original research, mini-reviews, reviews, and methods articles in the basic and clinical aspects of all areas of lipid mediator research: cell biology, developmental biology, genetics, molecular biology, chemistry, biochemistry, physiology, pharmacology, endocrinology, biology, the medical sciences, and epidemiology.
Prostaglandins & Other Lipid Mediators also accepts proposals for special issue topics. The Editors will make every effort to advise authors of the decision on the submitted manuscript within 3-4 weeks of receipt.