Generalized Complex Conformable Derivative and Integral Bases in Fréchet Spaces

Gamal Hassan, Ali Sdeek, Amira Atta
{"title":"Generalized Complex Conformable Derivative and Integral Bases in Fréchet Spaces","authors":"Gamal Hassan, Ali Sdeek, Amira Atta","doi":"10.21608/aunj.2023.249872.1069","DOIUrl":null,"url":null,"abstract":"This paper presents an additional approach in the field of polynomial bases, utilizing generalized complex conformable fractional derivative and integral operators. These operators are applied to polynomial bases of complex conformable derivatives (GCCDB) and generalized complex conformable integrals (GCCIB) in Fréchet spaces. We also investigate their convergence properties within closed disks, open disks, open regions surrounding closed disks, origin and for all entire functions, employing the Cannon sum, order, type and -property as convergence criteria for our study. The significance of this work lies in generalizing","PeriodicalId":8568,"journal":{"name":"Assiut University Journal of Multidisciplinary Scientific Research","volume":"54 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assiut University Journal of Multidisciplinary Scientific Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/aunj.2023.249872.1069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an additional approach in the field of polynomial bases, utilizing generalized complex conformable fractional derivative and integral operators. These operators are applied to polynomial bases of complex conformable derivatives (GCCDB) and generalized complex conformable integrals (GCCIB) in Fréchet spaces. We also investigate their convergence properties within closed disks, open disks, open regions surrounding closed disks, origin and for all entire functions, employing the Cannon sum, order, type and -property as convergence criteria for our study. The significance of this work lies in generalizing
弗雷谢特空间中的广义复变衍生基和积分基
本文提出了多项式基领域的另一种方法,即利用广义复数共形分数导数和积分算子。这些算子被应用于弗雷谢特空间中的复共形导数多项式基(GCCDB)和广义复共形积分(GCCIB)。我们还研究了它们在封闭磁盘、开放磁盘、封闭磁盘周围的开放区域、原点以及所有整体函数中的收敛特性,并将坎农和、阶、类型和-属性作为我们研究的收敛标准。这项工作的意义在于概括了
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信