Electric field and strain tuned the electronic and optical properties of Zr2CO2/MoSe2 van der Waals heterojunction

IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY
Weilong Lei, Rui Zhou, Fangfang Zhuang, Hongbo Li, Xiaojun Ye, Rui Zhang
{"title":"Electric field and strain tuned the electronic and optical properties of Zr2CO2/MoSe2 van der Waals heterojunction","authors":"Weilong Lei,&nbsp;Rui Zhou,&nbsp;Fangfang Zhuang,&nbsp;Hongbo Li,&nbsp;Xiaojun Ye,&nbsp;Rui Zhang","doi":"10.1016/j.physe.2024.116006","DOIUrl":null,"url":null,"abstract":"<div><p>Two-dimensional semiconductor materials have attracted significant research interest due to their exceptional properties in various applications. Among them, transition-metal dichalcogenides and MXenes have emerged as widely used materials in photoelectronic devices due to their excellent optical and electronic properties. In this study, we investigate the electronic and optical properties of MXene/MX<sub>2</sub> heterojunctions by employing First Principles based on density functional theory calculations on Zr<sub>2</sub>CO<sub>2</sub>/MoSe<sub>2</sub> van der Waals heterojunctions. The results of band structure, density of states and band alignment demonstrate that the Zr<sub>2</sub>CO<sub>2</sub>/MoSe<sub>2</sub> heterojunction is a type-II band alignment with an indirect bandgap of 0.93 eV. We further explore the impact of electric fields and strains on their electronic and optical performance. The results show that carriers can be effectively separated for designing high-performance devices in photocatalysis under electric fields ranging from −0.5 to 0.5 V/Å and biaxial strains ranging from −4% to 10 %. The formation of the Zr<sub>2</sub>CO<sub>2</sub>/MoSe<sub>2</sub> heterojunction allows for enhanced coefficient and a broader light absorption range compared to the individual Zr<sub>2</sub>CO<sub>2</sub> and MoSe<sub>2</sub> components. In consequence, this study contributes to a fundamental understanding of Zr<sub>2</sub>CO<sub>2</sub>/MoSe<sub>2</sub> heterojunctions and their potential applications in photocatalysis.</p></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947724001103","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional semiconductor materials have attracted significant research interest due to their exceptional properties in various applications. Among them, transition-metal dichalcogenides and MXenes have emerged as widely used materials in photoelectronic devices due to their excellent optical and electronic properties. In this study, we investigate the electronic and optical properties of MXene/MX2 heterojunctions by employing First Principles based on density functional theory calculations on Zr2CO2/MoSe2 van der Waals heterojunctions. The results of band structure, density of states and band alignment demonstrate that the Zr2CO2/MoSe2 heterojunction is a type-II band alignment with an indirect bandgap of 0.93 eV. We further explore the impact of electric fields and strains on their electronic and optical performance. The results show that carriers can be effectively separated for designing high-performance devices in photocatalysis under electric fields ranging from −0.5 to 0.5 V/Å and biaxial strains ranging from −4% to 10 %. The formation of the Zr2CO2/MoSe2 heterojunction allows for enhanced coefficient and a broader light absorption range compared to the individual Zr2CO2 and MoSe2 components. In consequence, this study contributes to a fundamental understanding of Zr2CO2/MoSe2 heterojunctions and their potential applications in photocatalysis.

电场和应变调节 Zr2CO2/MoSe2 范德华异质结的电子和光学特性
二维半导体材料因其在各种应用中的优异特性而引起了人们的极大研究兴趣。其中,过渡金属二卤化物和 MXene 因其优异的光学和电子特性,已成为光电子器件中广泛使用的材料。在本研究中,我们采用基于第一性原理的密度泛函理论计算 Zr2CO2/MoSe2 范德华异质结,研究了 MXene/MX2 异质结的电子和光学特性。能带结构、态密度和能带排列的结果表明,Zr2CO2/MoSe2 异质结属于 II 型能带排列,间接带隙为 0.93 eV。我们进一步探讨了电场和应变对其电子和光学性能的影响。结果表明,在-0.5至0.5 V/Å的电场和-4%至10%的双轴应变下,载流子可以有效分离,从而设计出高性能的光催化器件。与单独的 Zr2CO2 和 MoSe2 成分相比,Zr2CO2/MoSe2 异质结的形成可提高系数并扩大光吸收范围。因此,这项研究有助于从根本上了解 Zr2CO2/MoSe2 异质结及其在光催化中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
6.10%
发文量
356
审稿时长
65 days
期刊介绍: Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals. Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena. Keywords: • topological insulators/superconductors, majorana fermions, Wyel semimetals; • quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems; • layered superconductivity, low dimensional systems with superconducting proximity effect; • 2D materials such as transition metal dichalcogenides; • oxide heterostructures including ZnO, SrTiO3 etc; • carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.) • quantum wells and superlattices; • quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect; • optical- and phonons-related phenomena; • magnetic-semiconductor structures; • charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling; • ultra-fast nonlinear optical phenomena; • novel devices and applications (such as high performance sensor, solar cell, etc); • novel growth and fabrication techniques for nanostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信