{"title":"The influence of magnetic field parameters and time step on deep learning models of solar flare prediction","authors":"Jinfang Wei, Yanfang Zheng, Xuebao Li, Changtian Xiang, Pengchao Yan, Xusheng Huang, Liang Dong, Hengrui Lou, Shuainan Yan, Hongwei Ye, Xuefeng Li, Shunhuang Zhang, Yexin Pan, Huiwen Wu","doi":"10.1007/s10509-024-04314-6","DOIUrl":null,"url":null,"abstract":"<div><p>The research on solar flare predicting holds significant practical and scientific value for safeguarding human activities. Current solar flare prediction models have not fully considered important factors such as time step length, nor have they conducted a comparative analysis of the physical features in multiple models or explored the consistency in the importance of features. In this work, based on SHARP data from SDO, we build 9 machine learning-based solar flare prediction models for binary “Yes” or “No” class prediction within the next 24 hours, and study the impact of different time steps and other factors on the forecasting performance. The main results are as follows. (1) The predictive performance of eight deep learning models shows an increasing trend as the time step length increases, and the models perform the best at the length of 40. (2) In predicting solar flares of ≥C class and ≥M class, the True Skill Statistic(TSS) of deep learning models consistently outperforms that of baseline model. For the same model, the TSS for predicting ≥M class flares generally exceeds that for predicting ≥C class flares. (3) The Brier Skill Score (BSS) of deep learning models significantly surpasses that of baseline model in predicting ≥C class flares. However, the BSS scores of the nine models are comparable for predicting ≥M class flares. For the same model, the BSS for predicting ≥C class flares is generally higher than that for predicting ≥M class flares. (4) Through feature importance analysis of multiple models, the common features that consistently rank at the top and bottom are identified.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-024-04314-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The research on solar flare predicting holds significant practical and scientific value for safeguarding human activities. Current solar flare prediction models have not fully considered important factors such as time step length, nor have they conducted a comparative analysis of the physical features in multiple models or explored the consistency in the importance of features. In this work, based on SHARP data from SDO, we build 9 machine learning-based solar flare prediction models for binary “Yes” or “No” class prediction within the next 24 hours, and study the impact of different time steps and other factors on the forecasting performance. The main results are as follows. (1) The predictive performance of eight deep learning models shows an increasing trend as the time step length increases, and the models perform the best at the length of 40. (2) In predicting solar flares of ≥C class and ≥M class, the True Skill Statistic(TSS) of deep learning models consistently outperforms that of baseline model. For the same model, the TSS for predicting ≥M class flares generally exceeds that for predicting ≥C class flares. (3) The Brier Skill Score (BSS) of deep learning models significantly surpasses that of baseline model in predicting ≥C class flares. However, the BSS scores of the nine models are comparable for predicting ≥M class flares. For the same model, the BSS for predicting ≥C class flares is generally higher than that for predicting ≥M class flares. (4) Through feature importance analysis of multiple models, the common features that consistently rank at the top and bottom are identified.
期刊介绍:
Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered.
The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing.
Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.