Chaohua Dong , Rong Chen , Zhijie Xiao , Weiyi Liu
{"title":"Functional quantile autoregression","authors":"Chaohua Dong , Rong Chen , Zhijie Xiao , Weiyi Liu","doi":"10.1016/j.jeconom.2024.105765","DOIUrl":null,"url":null,"abstract":"<div><div><span>This paper proposes a new class of time series models, the functional </span>quantile<span> autoregression (FQAR) models, in which the conditional distribution of the observation at the current time point is affected by its past distributional information, and is expressed as a functional of the past conditional quantile functions. Different from the conventional functional time series models which are based on functionally observed data, the proposed FQAR method studies functional dynamics in traditional time series data. We propose a sieve estimator for the model. Asymptotic properties of the estimators are derived. Numerical investigations are conducted to highlight the proposed method.</span></div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"244 2","pages":"Article 105765"},"PeriodicalIF":9.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624001118","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a new class of time series models, the functional quantile autoregression (FQAR) models, in which the conditional distribution of the observation at the current time point is affected by its past distributional information, and is expressed as a functional of the past conditional quantile functions. Different from the conventional functional time series models which are based on functionally observed data, the proposed FQAR method studies functional dynamics in traditional time series data. We propose a sieve estimator for the model. Asymptotic properties of the estimators are derived. Numerical investigations are conducted to highlight the proposed method.
期刊介绍:
The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.