Data distribution inference attack in federated learning via reinforcement learning support

IF 3.2 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Dongxiao Yu , Hengming Zhang , Yan Huang , Zhenzhen Xie
{"title":"Data distribution inference attack in federated learning via reinforcement learning support","authors":"Dongxiao Yu ,&nbsp;Hengming Zhang ,&nbsp;Yan Huang ,&nbsp;Zhenzhen Xie","doi":"10.1016/j.hcc.2024.100235","DOIUrl":null,"url":null,"abstract":"<div><div>Federated Learning (FL) is currently a widely used collaborative learning framework, and the distinguished feature of FL is that the clients involved in training do not need to share raw data, but only transfer the model parameters to share knowledge, and finally get a global model with improved performance. However, recent studies have found that sharing model parameters may still lead to privacy leakage. From the shared model parameters, local training data can be reconstructed and thus lead to a threat to individual privacy and security. We observed that most of the current attacks are aimed at client-specific data reconstruction, while limited attention is paid to the information leakage of the global model. In our work, we propose a novel FL attack based on shared model parameters that can deduce the data distribution of the global model. Different from other FL attacks that aim to infer individual clients’ raw data, the data distribution inference attack proposed in this work shows that the attackers can have the capability to deduce the data distribution information behind the global model. We argue that such information is valuable since the training data behind a well-trained global model indicates the common knowledge of a specific task, such as social networks and e-commerce applications. To implement such an attack, our key idea is to adopt a deep reinforcement learning approach to guide the attack process, where the RL agent adjusts the pseudo-data distribution automatically until it is similar to the ground truth data distribution. By a carefully designed Markov decision proces (MDP) process, our implementation ensures our attack can have stable performance and experimental results verify the effectiveness of our proposed inference attack.</div></div>","PeriodicalId":100605,"journal":{"name":"High-Confidence Computing","volume":"5 1","pages":"Article 100235"},"PeriodicalIF":3.2000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-Confidence Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667295224000382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Federated Learning (FL) is currently a widely used collaborative learning framework, and the distinguished feature of FL is that the clients involved in training do not need to share raw data, but only transfer the model parameters to share knowledge, and finally get a global model with improved performance. However, recent studies have found that sharing model parameters may still lead to privacy leakage. From the shared model parameters, local training data can be reconstructed and thus lead to a threat to individual privacy and security. We observed that most of the current attacks are aimed at client-specific data reconstruction, while limited attention is paid to the information leakage of the global model. In our work, we propose a novel FL attack based on shared model parameters that can deduce the data distribution of the global model. Different from other FL attacks that aim to infer individual clients’ raw data, the data distribution inference attack proposed in this work shows that the attackers can have the capability to deduce the data distribution information behind the global model. We argue that such information is valuable since the training data behind a well-trained global model indicates the common knowledge of a specific task, such as social networks and e-commerce applications. To implement such an attack, our key idea is to adopt a deep reinforcement learning approach to guide the attack process, where the RL agent adjusts the pseudo-data distribution automatically until it is similar to the ground truth data distribution. By a carefully designed Markov decision proces (MDP) process, our implementation ensures our attack can have stable performance and experimental results verify the effectiveness of our proposed inference attack.
通过强化学习支持联合学习中的数据分布推理攻击
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信