The refined solution to the Capelli eigenvalue problem for gl(m|n)⊕gl(m|n) and gl(m|2n)

IF 0.5 4区 数学 Q3 MATHEMATICS
Mengyuan Cao, Monica Nevins, Hadi Salmasian
{"title":"The refined solution to the Capelli eigenvalue problem for gl(m|n)⊕gl(m|n) and gl(m|2n)","authors":"Mengyuan Cao,&nbsp;Monica Nevins,&nbsp;Hadi Salmasian","doi":"10.1016/j.indag.2024.05.002","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>g</mi></math></span> be either the Lie superalgebra <span><math><mrow><mi>gl</mi><mrow><mo>(</mo><mi>V</mi><mo>)</mo></mrow><mo>⊕</mo><mi>gl</mi><mrow><mo>(</mo><mi>V</mi><mo>)</mo></mrow></mrow></math></span> where <span><math><mrow><mi>V</mi><mo>≔</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>m</mi><mo>|</mo><mi>n</mi></mrow></msup></mrow></math></span> or the Lie superalgebra <span><math><mrow><mi>gl</mi><mrow><mo>(</mo><mi>V</mi><mo>)</mo></mrow></mrow></math></span> where <span><math><mrow><mi>V</mi><mo>≔</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>m</mi><mo>|</mo><mn>2</mn><mi>n</mi></mrow></msup></mrow></math></span>. Furthermore, let <span><math><mi>W</mi></math></span> be the <span><math><mi>g</mi></math></span>-module defined by <span><math><mrow><mi>W</mi><mo>≔</mo><mi>V</mi><mo>⊗</mo><msup><mrow><mi>V</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span> in the former case and <span><math><mrow><mi>W</mi><mo>≔</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>V</mi><mo>)</mo></mrow></mrow></math></span> in the latter case. Associated to <span><math><mrow><mo>(</mo><mi>g</mi><mo>,</mo><mi>W</mi><mo>)</mo></mrow></math></span> there exists a distinguished basis of <em>Capelli operators</em> <span><math><msub><mrow><mrow><mo>{</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>λ</mi></mrow></msup><mo>}</mo></mrow></mrow><mrow><mi>λ</mi><mo>∈</mo><mi>Ω</mi></mrow></msub></math></span>, naturally indexed by a set of hook partitions <span><math><mi>Ω</mi></math></span>, for the subalgebra of <span><math><mi>g</mi></math></span>-invariants in the superalgebra <span><math><mrow><mi>PD</mi><mrow><mo>(</mo><mi>W</mi><mo>)</mo></mrow></mrow></math></span> of superdifferential operators on <span><math><mi>W</mi></math></span>.</div><div>Let <span><math><mi>b</mi></math></span> be a Borel subalgebra of <span><math><mi>g</mi></math></span>. We compute eigenvalues of the <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>λ</mi></mrow></msup></math></span> on the irreducible <span><math><mi>g</mi></math></span>-submodules of <span><math><mrow><mi>P</mi><mrow><mo>(</mo><mi>W</mi><mo>)</mo></mrow></mrow></math></span> and obtain them explicitly as the evaluation of the interpolation super Jack polynomials of Sergeev–Veselov at suitable affine functions of the <span><math><mi>b</mi></math></span>-highest weight. While the former case is straightforward, the latter is significantly more complex. This generalizes a result by Sahi, Salmasian and Serganova for these cases, where such formulas were given for a fixed choice of Borel subalgebra.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 1","pages":"Pages 218-244"},"PeriodicalIF":0.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357724000466","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let g be either the Lie superalgebra gl(V)gl(V) where Vm|n or the Lie superalgebra gl(V) where Vm|2n. Furthermore, let W be the g-module defined by WVV in the former case and WS2(V) in the latter case. Associated to (g,W) there exists a distinguished basis of Capelli operators {Dλ}λΩ, naturally indexed by a set of hook partitions Ω, for the subalgebra of g-invariants in the superalgebra PD(W) of superdifferential operators on W.
Let b be a Borel subalgebra of g. We compute eigenvalues of the Dλ on the irreducible g-submodules of P(W) and obtain them explicitly as the evaluation of the interpolation super Jack polynomials of Sergeev–Veselov at suitable affine functions of the b-highest weight. While the former case is straightforward, the latter is significantly more complex. This generalizes a result by Sahi, Salmasian and Serganova for these cases, where such formulas were given for a fixed choice of Borel subalgebra.
gl(m|n
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
74
审稿时长
79 days
期刊介绍: Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信